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Chapter 13
A Range of Earth Observation Techniques 
for Assessing Plant Diversity

Angela Lausch, Marco Heurich, Paul Magdon, Duccio Rocchini, 
Karsten Schulz, Jan Bumberger, and Doug J. King

13.1  Understanding Plant Diversity with Remote Sensing

Stress, disturbance, and resource limitations such as anthropogenic changes to eco-
systems all lead to changes in biodiversity and vegetation diversity (Cardinale et al. 
2012) on different scales of biological organization as well as disturbances in the 
interactions between trophic levels and ecosystem functions, impairing ecosystem 
services such as pollination or soil fertility (Cord et al. 2017). Vegetation diversity 
is multidimensional, multifactorial, and tremendously complex in time and space 
(Lausch et al. 2018a). This level of complexity can only be fully understood when 
monitoring approaches are applied to record different characteristics of vegetation 
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(i.e., phylo-diversity; taxonomic, structural, functional, and trait diversity on differ-
ent levels of biotic organization—molecular, genetic, individual, species, popula-
tion, community, biome, ecosystem, and landscape). Different processes and drivers 
influence the resilience of vegetation diversity (Fig. 13.1).

To record the status, stress, disturbances, and resource limitations in vegetation 
diversity, we have to differentiate between two monitoring approaches: (i) in-situ 
approaches, whereby the most important monitoring concepts are the phylogenetic 
species concept (PSC, Eldredge and Cracraft 1980), the biological species concept 
(BSC, Mayr 1942) and the morphological species concept (MSC, Mayr 1969) and 
(ii) physically based approaches of remote sensing (RS) (Lausch et  al. 2018b). 
Unlike in-situ approaches, RS records the biochemical, biophysical, physiognomic, 
morphological, structural, phenological, and functional characteristics of vegetation 
diversity at all scales, from the molecular and individual plant levels to communities 
and the entire ecosystem, based on the principles of image spectroscopy across the 
electromagnetic spectrum from the visible to the microwave (Ustin and Gamon 
2010). When compared with the traits approach of the MSC used by taxonomists, 
RS approaches are not able to record the same number and characteristics of traits 
or trait variations as the in-situ approaches (Homolová et  al. 2013; Lausch 
et al. 2016a).

Traits and trait variations that can be recorded using RS techniques are hereafter 
referred to as spectral traits (ST), and the changes to their spectral characteristics 
are referred to as spectral trait variations (STV). The overall approach is referred to 
as the remote sensing-spectral trait/spectral trait variations (RS-ST/STV) concept 
for monitoring biodiversity (Lausch et al. 2016b) as well as geodiversity (Lausch 
et al. 2019) (Fig. 13.7).

Traits bridge the gap between in-situ and RS monitoring approaches. Species 
traits have allowed us to take a completely new direction and to gain a better under-
standing of fundamental questions of status, stress, disturbances, resource limita-
tions, and resilience in biodiversity—i.e., “why organisms live where they do and 
how they will respond to environmental change” (Green et  al. 2008). Therefore, 
ecologists are increasingly focusing on traits rather than species to better understand 
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the status, changes, health, and resilience of ecosystems (Cernansky 2017) and the 
internal patterns and heterogeneity of communities and landscapes (Lausch et al. 
2015a). To understand the complexity of ecosystems, no one monitoring approach, 
no single model, scale, or RS platform on its own is sufficient to discern the effects 
of processes and different drivers of vegetation diversity (Lausch et al. 2018a, b).

This chapter introduces the different ranges of EO techniques for assessing veg-
etation diversity. The focus here is to give an overview of existing close-range RS 
platforms as well as air- and spaceborne RS platforms for assessing plant diversity.

13.2  Range of EO Platforms to Assess Plant Diversity

RS sensors are mounted on different platforms such as camera traps or handheld, or 
they may have fixed supports (e.g., a tripod) or towers for field-based spectral mea-
surements. Drones, aircraft (airborne RS), or satellites (spaceborne RS) are also 
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Fig. 13.1 Schematic diagram of the different levels of vegetation organization from genes up to 
vegetation types showing characteristics of phylo-diversity, taxonomic diversity, structural diver-
sity, functional diversity, and trait diversity. This also shows how the different characteristics of the 
processes (the extent, process intensity, process consistency, resilience, and their characteristics) 
all influence the resilience and health of vegetation. (From Lausch et al. 2018a)
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used in field-based studies, depending on the spatial scale of the study (Gamon 
et  al., Chap. 16). In laboratories, cameras and sensors may be mounted in plant 
phenomics facilities or ecotrons (Fig. 13.2; Lausch et al. 2017). The characteristics 
of all RS approaches are the same, irrespective of the platform. Vegetation stress, 
disturbance, and diversity result in variations in spectral radiance or reflectance that 
are recorded using RS in a nondestructive manner. The RS sensor on the platform 
records the spectral radiance at a distance of just a few millimeters up to thousands 
of kilometers to the object of interest.

Fig. 13.2 Overview of different close-range, air-, and spaceborne RS platforms for assessing plant 
and vegetation diversity and vegetation health. (a) Laboratory spectrometer; (b) ash trees moni-
tored in a close-range RS spectral laboratory (manual) with imaging hyperspectral sensors AISA- 
EAGLE/HAWK (Modified after Brosinsky et al. 2013); (c) automated plant phenomics facilities; 
(d) ecotrons (Modified after Türke et  al. 2017); (e) Global Change Experimental Facility 
(GCEF)/Helmholtz-Zentrum für Umweltforschung (UFZ), Germany as platforms with different 
RS sensors (photo: A.  Künzelmann/UFZ); (f) manual measuring with field spectrometer; (g) 
WSNs; (h) one sensor node of the WSN (Graphic, photo g, h by J. Bumberger and H. Mollenhauer/
UFZ); (i) flux tower with different RS instruments, test area grassland/UFZ; (j) flux tower with 
different RS instruments, test area Hohe Holz/UFZ (Photo i, j by C. Rebmann/UFZ); (k) mobile 
crane with RS sensors; (l) unmanned aerial systems (UAS)—drone with different RS sensors; (m) 
microlight of the UFZ with different RS sensors like the AISA-EAGLE (hyperspectral 400–
970 nm); (n) gyrocopter of the Institute for Geoinformation and Surveying, Dessau, Germany, with 
different RS sensors (Photo by L. Bannehr); (o) Cessna; (p) Spaceborne RS platforms. (Modified 
after Lausch et al. 2017)
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13.2.1  Close-Range EO Approaches

13.2.1.1  Spectral Laboratory

The reactions of plants to stress phenomena depend on the plant species (Müller 
2009; Teodoro et al. 2016). Teodoro et al. (2016) analyzed the different strategies of 
Brazilian tree species like Campomanesia pubescens (Myrtaceae), Eremanthus 
seidellii, and Lessingianthus warmingianus (Asteraceae) to cope with drought 
stress. The results showed different reactions and trade-offs to maintain plant func-
tioning under drought stress conditions. Moreover, the ability of different tree spe-
cies to adapt to climate change is still not well understood (Beck and Müller 2007). 
Reactions of woody plants to stress factors such as drought can often only be 
observed years later in the form of biochemical, physiological, or geometric changes 
to woody plant traits (Buddenbaum et al. 2015b). Therefore, specific in-situ investi-
gations need to be conducted on the stress reactions of different taxonomic plants to 
determine the spectral responses to different drivers.

With the help of close-range laboratory spectroscopy (see Fig. 13.2a, b), exten-
sive long-term stress monitoring can be carried out that takes into account entire 
vegetation periods as well as investigations over several years. Scenarios specifi-
cally targeted at investigating different stress factors such as stress from drought, 
ozone levels, fungal infestations, pesticide deposits, or temperature increases or 
decreases are conducted under comparable settings and environmental conditions, 
enabling good inputs for models and eliminating confounding factors. In addition to 
imaging and nonimaging spectrometer measurements, a broad range of parameters 
for vegetation traits, soil, and climate can be measured with in-situ approaches. 
Brosinsky et al. (2013) investigated the spectral response from the impacts of flood-
ing on the physiological stress reactions of ash trees Fraxinus excelsior L. over a 
3-month period, whereas Buddenbaum et al. (2015b) modeled the photosynthesis 
rate of young European beech trees under drought stress using hyperspectral visible 
infrared and hyperspectral thermal sensors. They created high spatial resolution 
(cm) maps of photosynthetic activity using the photochemical reflectance index 
(PRI), fluorescence, and temperature. Other approaches have derived the different 
phenology indicators of barley with imaging hyperspectral RS over its entire devel-
opment period (Lausch et al. 2015b).

13.2.1.2  Plant Phenomics Facilities

One of the most important challenges in plant biology and vegetation stress physiol-
ogy is the qualitative, quantitative, and spectroscopic recording of plant species 
phenotypes to gain a better understanding of interactions between the genotype and 
the phenotype. The genotype of a plant species comprises its genetic information, 
while the phenotype represents the physiological, morphological, anatomical, and 
development characteristics as well as interactions with the environment, resource 
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limitations, and stress factors (see Cavender-Bares et al., Chap. 2). The interaction 
of the genotype with its environment give rise to the functional and structural traits 
of plants and their specific phenotype (Großkinsky et al. 2015a, b; Pieruschka and 
Lawson 2015). Insights into the role of genotype and phenotype in plant stress phys-
iology can be gained not only from recording individual plant spectral trait-stress 
factor interactions but also by including the entire genotype-epigenetic-phenotype- 
environment matrix (Mittler and Blumwald 2010). This can be achieved by record-
ing phenotypical plant traits in plant phenomics facilities (Furbank 2009; Großkinsky 
et  al. 2015a, b) (see Fig. 13.2c). Due to the high number of plant species, plant 
phenomics facilities have been established all over the world that collaborate as part 
of the International Plant Phenotyping Network (IPPN, http://www.plant-phenotyp-
ing.org/), where in an automated and often robotic manner, noninvasive measure-
ment methods such as RS techniques are implemented, enabling a holistic and 
quantitative recording of the phenotype of a plant over its entire development period 
at a reasonable cost (Ehrhardt and Frommer 2012; Fiorani and Schurr 2013).

Plant phenomics facilities thus include comparable analyses of genotype- 
phenotype interactions under experimental as well as natural growth conditions. 
The goal of plant phenomics facilities is to implement and develop innovative non-
invasive measurement methods and RS techniques such as stereo hyperspectral, 
RGB, thermal, and fluorescence cameras, laser scanning instruments, or x-ray 
tomographs (Fiorani and Schurr 2013). Data from such facilities are then saved in 
databases (Krajewski et  al. 2015) to make such information available for future 
research with airborne and spaceborne RS applications.

With plant phenomics facilities, crucial investigations have been carried out on 
the effects of different plant stresses on photosynthetic performance (Jansen et al. 
2009; Konishi et al. 2009; Rascher 2007). This research on chlorophyll fluorescence 
and its acquisition using spectroscopic techniques forms the basis for developing 
the Fluorescence Explorer (FLEX) sensors (Kraft et  al. 2012; Rascher 2007; 
Rascher et al. 2015). On the basis of its very high spectral resolution of 0.3–3.0 μm, 
FLEX will be the first satellite that is able to directly measure the solar-induced 
chlorophyll fluorescence and thus the stress levels in plants and other types of veg-
etation using RS.

13.2.1.3  Ecotrons

Ecotrons are controlled environmental facilities (see Fig. 13.2d) for the investiga-
tion of plant and animal populations and ecosystem processes under near-natural 
conditions using noninvasive methods (Lawton et al. 1993; Türke et al. 2017). They 
differ from greenhouse experiments because not only plant populations, but interac-
tions between plant and animal populations, can be investigated. Furthermore, eco-
trons enable investigations of aboveground and belowground interactions, which 
drive the relationship between plant diversity and ecosystem function 
(Eisenhauer 2018).
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Ecological processes and material flows can be measured by ecotrons with non-
invasive methods, while at the same time, the environmental conditions are con-
trolled and regulated. Ecosystems that are investigated by ecotrons are thus closed 
systems. There is no undesired input or outflow of water, nutrients, resources, 
organisms, or gases, or input from undesired disturbance variables or stress factors. 
All changes taking place in such ecosystem processes are documented and can be 
compared with one another and with different scenarios in a standardized manner. 
In ecotrons, biodiversity is manipulated at different trophic levels at the same time. 
In this manner, the responses of different species and genotypes and species to 
stress, disturbances, or resource limitations and their effects on ecosystem functions 
can be examined. This approach enables a much better recording and understanding 
of aboveground and belowground interactions between different plant and animal 
species, microorganisms, and abiotic factors, as well as material and energy flows. 
The integration of close-range RS sensors in ecotrons is still very new and in need 
of further development if we are to understand the complete system of soil- 
vegetation- climate-biotic interactions with spectral response.

13.2.1.4  WSNs, Sensorboxes

WSNs can be used to record complex vegetation processes both extensively and 
continually in a noninvasive, cost-effective, and automated manner (Hart and 
Martinez 2006).

The implementation of wireless mobile and stationary sensor networks in ter-
restrial environmental systems (Fig. 13.2g, h) enables high-frequency in-situ infor-
mation to be recorded using various sensor types (e.g., thermal, multispectral, 
hyperspectral, soil moisture, air condition). Another advantage of mobile wireless 
ad hoc sensor networks is their self-organizing infrastructure, leading to significant 
reduction of cost and time consumption for installation, maintenance, and operation.

WSNs are being implemented more frequently in environmental and vegetation 
monitoring (Hwang et al. 2010; Mollenhauer et al. 2016) in agriculture and the food 
industry (Mafuta et al. 2013; Ruiz-Garcia et al. 2009), for monitoring terrestrial and 
underground conditions such as soils, and for aquatic applications (Yick et al. 2008). 
They have also been used for experimental platforms such as greenhouses or the 
GCEF (Mollenhauer et  al. 2016). In the context of vegetation health, WSNs are 
implemented to detect and verify forest fires in real time (Liyang Yu et al. 2005; 
Lloret et al. 2009) or to demonstrate the effects of the 2015 El Niño extreme drought 
on the sap flow of trees in eastern Amazonia (Mauro et al. 2016).

WSNs have also been used to record how important processes of soil-plant- 
atmosphere interactions; vegetation processes such as transpiration, carbon uptake 
and storage, and water stripping from clouds are affected by climatic variation and 
the temporal and spatial structure of the vegetation interior in whole ecosystems 
(Oliveira et al. 2016). Teodoro et al. (2016) used WSN to demonstrate the interplay 
between hydraulic traits, growth performance, and stomata regulation capacity in 
three shrub species in a tropical montane scrubland of Brazil under contrasting 
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water availability. The results showed that these plant species employ different strat-
egies in the regulation of hydraulic and stomatal conductivity during drought stress 
and thus substantiate the need for setting up WSN for different plant species and 
communities (Teodoro et al. 2016).

Grassland ecology experiments in remote locations requiring quantitative analy-
sis of biomass, which is a key ecosystem variable, are becoming increasingly wide-
spread but are still limited by manual sampling methodologies. To provide a 
cost-effective automated solution for biomass determination, several photogram-
metric techniques have been examined to generate 3-D point cloud representations 
of plots, which are used to estimate aboveground biomass. Methods investigated 
include structure from motion (SfM) techniques (Kröhnert et al. 2018; see Fig. 13.3).

13.2.1.5  Towers

Flux towers involve an integrated sampling approach (see Fig. 13.2i, j, k) that sup-
ports the acquisition of different ecosystem parameters such as carbon dioxide, 
water vapor, and energy fluxes as they cycle through the atmosphere, as well as 
vegetation and soil parameters. FLUX towers are often coupled with sensor tech-
nologies such as airborne RS or soil sensors. Towers acquire individual point and 
local area information and are of particular importance in terms of long-term in-situ 
measurement for the calibration and validation of air- and spaceborne RS data. By 
linking flux towers to an international network (FLUXNET, Baldocchi et al. 2001), 
greater understanding of ecological processes and changes to vegetation health has 
been achieved using RS (Chen 2016; Yang et al. 2016). Towers and mobile in-situ 
stations are often combined as global sensor networks. Furthermore, the physiologi-
cal reactions of plant species and communities depend on the taxonomy and phy-
logeny of plant species characteristics and numerous abiotic ecosystem variables as 
well as the intensity of land use (Garnier et al. 2007). Simple drones are also avail-

Fig. 13.3 Generated 3-D 
representations of 
Onobrychis viciifolia and 
Daucus carota using 
structure from motion 
(SfM) techniques as well 
as the use of a time-of- 
flight (TOF) 3-D camera, a 
laser light sheet 
triangulation system, and a 
coded light projection 
system. (From Kröhnert 
et al. 2018)

A. Lausch et al.
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able, enabling a mapping of the distribution of plant species in mixed grassland 
communities using close-range imaging spectroscopy (Lopatin et  al. 2017). The 
special value of both fixed and mobile towers or simple close-range RS platforms is 
that vegetation diversity can be monitored more frequently and with a higher spatial 
resolution. Table 13.1 lists the advantages and disadvantages of close-range EO 
approaches to monitor and assess vegetation diversity.

13.2.2  Air- and Spaceborne RS Platforms and Sensors

13.2.2.1  Unmanned Aerial Systems (UAS)

In recent years, UAS has become an important RS technology in spatial ecology. 
Nowadays a plethora of platforms, including fixed-wing and rotor-based systems, 
can carry multispectral, hyperspectral, thermal, LiDAR, and radar sensors and can 
navigate autonomously on predefined routes using global navigation satellite sys-
tem (GNSS). With the increased availability and simplicity, such platforms are 
being used more and more in ecological research and monitoring (Anderson and 
Gaston 2013). In this context two essential characteristics of UAS are relevant:

 (i) High flexibility and low cost of operation: UASs offer high flexibility in terms 
of payloads, flight time, and flight specifications such as altitude, time of day, 
and weather condition. When compared with manned aircraft or satellites, it is 
much easier to plan and conduct an image acquisition campaign once a UAS 
and a trained pilot are available. Due to low fixed costs, UAS can be cheaper 
than manned planes and helicopters.

 (ii) High spatial and temporal resolutions: Within the technical and legal limita-
tions, flight heights of UAS can be freely set and typically range from a couple 
of meters to hundreds of meters. Depending on the sensor system, images with 
very high spatial resolution (<5 cm) can be acquired when flown at low alti-
tudes. The high flexibility of operation and the low image acquisition costs 
enable users to efficiently create multitemporal image series.

In the context of biodiversity monitoring, UASs are used in vegetated ecosystems to 
obtain optical images with high spatial and spectral resolution and 3-D point clouds 
of the Earth’s surface and vegetation structures.

In grassland ecosystems, high-resolution UAS images are used to map habitat 
types (Cruzan et al. 2016) or single target species such as weeds (Hardin and Jackson 
2005). In recent studies, proximal RS using scaffolds has been used to link species 
and functional diversity to spectral traits (Schweiger et  al. 2018). Here the high 
spatial resolution is of utmost importance because grassland plants are typically 
small and highly mixed (Lu et al. 2016). Very high spatial resolution imagery offers 
the potential for both community- and plant-based analysis (Lopatin et al. 2017). 
However, even with spatial resolutions <1 cm, species identification of individuals 
is challenging and might only work under favorable conditions such as low  structural 
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Table 13.1 Close-range Remote Sensing (RS) approaches and their advantages and disadvantages 
for monitoring and assessing plant diversity

Close-range RS approaches Advantages Disadvantages

Spectral analyses of plant 
species
(Asner et al. 2015; Asner and 
Martin 2009)

I.  Basis for conducting 
research on the spectral 
characteristics of specific 
biochemical, biophysical, 
and morphological traits in 
various organs of plants, 
including leaves and flowers

II.  Storage in spectral databases 
for validation and calibration

III.  Basis for the spectral 
fingerprints (SFP) of the 
vegetation

IV.  Basis for conducting 
research on taxonomic, 
phylogenetic, genetic, 
epigenetic, or 
morphological- functional 
features

Analysis on molecular 
level
Geometric, structural, 
distribution, population, 
and community effects are 
not measurable

Spectral laboratory
(manual operation)
(Brosinsky et al. 2013; 
Buddenbaum et al. 2015a, b; 
Buddenbaum and Hill 2015; 
Doktor et al. 2014; Lausch et al. 
2013)
Plant phenomics facilities and 
ecotrons
(fully automatic operation)
(Ehrhardt and Frommer 2012; 
Fiorani and Schurr 2013; 
Furbank 2009; Großkinsky et al. 
2015a, b; Li et al. 2014; 
Pieruschka and Lawson 2015; 
Virlet et al. 2015)

1.  Long-term monitoring is 
possible (entire vegetation 
period, over several years, 
specific investigations of 
impact phases of stressors  
on plant plants)

2.  Experimental stress analyses 
are possible (drought stress, 
heavy metals, tropospheric 
ozone, flooding, flood stress, 
nitrogen loads, etc.)

3.  Extensive measurement 
program is possible for  
biotic, abiotic, and climate 
conditions within the spectral 
laboratory

4.  Storage in spectral databases 
for validation and calibration

5.  Comparative analyses can be 
conducted under natural or 
artificial conditions to 
investigate the influence of 
artificial light, geometry 
effects, or additional effects 
on the spectral signal

6.  Multisensor recording at 
specific plant development 
stages a possible

Development of the 
measuring boxes for the 
sensors (automated)
Age and development 
stages of trees are a 
limiting factor (often only 
trees up to age 5 can be 
recorded)

(continued)
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complexity, low spatial overlap, and low number of species (Lopatin et al. 2017). 
Schweiger et al. (2018) showed a strong relationship between functional diversity of 
grassland species and spectral traits collected using a hyperspectral sensor mounted 
on a scaffolding. Following this new approach, detection of individuals is no longer 
needed to monitor functional aspects of biodiversity. If models are to be developed 
that link the spectral signals to properties of plant diversity, it is important that both 
the field data collection and the image campaign are synchronized, particular in 
highly dynamic ecosystems such as grasslands with high land-use intensities. The 
high flexibility of UAS is a major advantage in such situations.

In vegetated ecosystems, vegetation structure is a key characteristic that is 
strongly related to the diversity of many taxa. UAS high-resolution images are used 
to characterize different aspects of vegetation structure: Getzin et al. (2014) used 
high-resolution RGB images to create canopy gap maps. They showed strong rela-
tions between spatial gap metrics and herbal plant species diversity in temperate 
forests. 3-D point clouds derived from UAS images can be used to characterize the 

Table 13.1 (continued)

Close-range RS approaches Advantages Disadvantages

Tower (flux tower) with different 
noninvasive measuring 
technologies as well as RS 
technology
(mobile, permanently installed)
http://www.fluxnet.ornl.gov/
Phenocams
(Brown et al. 2016)

Advantages II, IV, 1, 3, 4, 6 
above also apply
(a)  Links with international 

networks are possible
(b)  Important ground-truth RS 

information for plant health 
under natural growth 
conditions, with certain 
variables

Local results for a 
particular site, which do 
not enable results for 
extensive areas, but are 
limited to the forest stand 
under investigation
Primarily nonimaging 
sensor technology can be 
implemented

WSNs (WSN)
(Hwang et al. 2010; Liyang Yu 
et al. 2005; Lloret et al. 2009; 
Mafuta et al. 2013; Mauro et al. 
2016; Mollenhauer et al. 2015, 
2016; Oliveira et al. 2016; 
Ruiz-Garcia et al. 2009; Teodoro 
et al. 2016)

Advantages II, IV, 1, 3, 4, 6, a, b 
above also apply
  Long-term monitoring with 

high time frequencies
  WSN enables results over 

more extensive areas from the 
network distribution

  Terrestrial sensor networks as 
well as aquatic WSNs are 
possible

The number of wireless 
sensor nodes determines 
the accuracy of 
information over extensive 
areas
Primarily nonimaging 
sensor technology can be 
implemented

Field measurements
(manual operation)
Long-term vegetation monitoring 
experiments
(Bruelheide et al. 2014; Hantsch 
et al. 2013; Hector et al. 2011; 
Scherer-Lorenzen et al. 2007)

Spectral measurements directly 
on trees
Investigation of geometric 
effects (different heights, 
recording angle)
Measuring various biochemical, 
biophysical, and structural 
variables in organs (roots, leaf, 
stem) of a tree
Recording microclimate 
information about soil, water, 
climate of a tree

Not applicable: IV, 1, 2, 3, 
4, 5, 6

13 A Range of Earth Observation Techniques for Assessing Plant Diversity
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3-D vegetation structure, for example, by deriving canopy height models to charac-
terize the structural complexity (Saarinen et al. 2017) or by describing vegetation 
structures directly based on the vertical profiles of the 3-D point clouds (Wallace 
et al. 2016).

Currently, the efficient use of UASs is limited to areas of less than a couple of 
square kilometers. Therefore, their main application in the context of biodiversity 
assessments is for sample-based observations (e.g., plots, transects) where relation-
ships between spectral and structural traits and components of vegetation diversity 
can be established. Given the option to create dense time series at user-defined fre-
quencies with low effort, UASs offer scientists new opportunities for scale- 
appropriate measurement of ecological phenomena (Anderson and Gaston 2013) 
such as phenological and other seasonal effects on canopy reflectance. Thus, they 
can be used to bridge the gap between scale of observation and the scale of the eco-
logical phenomena that long existed in the temporal and spatial domain when using 
air- or spaceborne platforms. Therefore, UAS technology needs to be considered as 
an important intermediate-scale technology for biodiversity monitoring systems 
and upscaling from field-based measurements and models to larger area estimation.

13.2.2.2  Optical RS

The relationship between optical spectral variability over space or time and species 
diversity can be used to optimize the inventory of species diversity, so priority may 
be given to sites that are spectrally more different and hence more diverse in species 
composition (Rocchini et  al. 2005). Such analyses can be conducted at different 
spatial extents and resolutions, from a few meters [e.g., using high-resolution 
(~1–3 m multispectral) satellite data such as Worldview or GeoEye] to 10–30 m 
(e.g., Sentinel, Landsat) up to large spatial grain and extent [e.g., Moderate 
Resolution Imaging Spectroradiometer (MODIS) data from 250 m to 1000 m].

Alpha Diversity

Alpha diversity is the number of species living within a given local area and is a 
measure of within-ecosystem species richness. Most research dealing with RS-based 
estimates of alpha diversity has focused on mapping localized biodiversity hot 
spots, based on the spectral variation hypothesis (SVH, (Palmer et al. 2002)). The 
SVH states that the spatial variability in the remotely sensed signal, i.e., the spectral 
heterogeneity, is expected to be positively related to environmental heterogeneity 
and could therefore be used as a powerful proxy of species diversity. In other terms, 
the greater the habitat heterogeneity, the greater the local species diversity within it, 
regardless of the taxonomic group under consideration. Besides random variation in 
species distribution, higher heterogeneity habitats will host a higher number of spe-
cies each occupying a particular niche (niche difference model, Nekola and 
White 1999).
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Different modeling techniques have been used to model the local species 
diversity- spectral heterogeneity relationship, ranging from simple univariate mod-
els (Gould 2000), to multivariate statistics (Feilhauer and Schmidtlein 2009), to 
neural networks (Foody and Cutler 2003) and generalized additive models (GAMs, 
Parviainen et al. 2009). A number of different measures of spectral heterogeneity 
have been proposed and used to assess ecological heterogeneity and thus species 
diversity (Cavender-Bares et al., Chap. 2). Many of these are related to the variabil-
ity in a spectral space of different pixel values, such as the variance or texture in a 
neighborhood of the spectral response (Gillespie 2005) or the distance from the 
spectral centroid, which may be represented as the mean of spectral values in a 
multidimensional system whose axes are represented by each image band or by 
principal components where noise related to band collinearity has been removed 
(Rocchini 2007). Moreover, in addition to the use of common vegetation indices 
such as the Normalized Difference Vegetation Index (NDVI), some studies have 
demonstrated an increase in the strength of the relationship when using additional 
spectral information (e.g., Landsat bands 5 and 7 in the shortwave infrared (SWIR) 
(Rocchini 2007) and (Nagendra et al. 2010)).

Beta Diversity

While alpha diversity is related to local variability, species turnover (beta diversity) 
is a crucial parameter when trying to identify high-biodiversity areas (Baselga 
2013). In fact, for a given level of local species richness, high beta diversity leads to 
high global diversity of the area. This is one of the basic rules underpinning the 
concept of irreplaceability of protected areas (e.g., Wegmann et al. 2014).

In some cases spatial distance/dispersal ability might not be the only driver of 
species turnover, which seems to be more strictly related to environmental condi-
tions. Hence, models have been built to relate species and spectral turnover to 
explain their potential relationship and its causes (Rocchini et al. 2018b). In some 
cases, spatial distance accounted only for a small fraction of variance in species 
similarity, while environmental variation is expected to account for a much larger 
one. When using spatial distances, distance decay does not necessarily account for 
environmental heterogeneity (Palmer and Michael 2005), especially in heavily frag-
mented landscapes. Thus, the use of spectral distances for summarizing beta diver-
sity patterns may be more reliable because this method explicitly takes environmental 
heterogeneity into account instead of mere spatial distances among sites. Therefore, 
it is expected that the higher the spectral distance among sites, the higher their dif-
ference in terms of environmental niches, potentially leading to higher beta diversity.

A straightforward method for measuring beta diversity is to calculate the differ-
ences between pairs of plots in terms of their species composition using one of the 
many (dis)similarity coefficients proposed in the ecological literature (e.g., Legendre 
and Legendre 1998) and assess the spectral turnover variability derived remotely 
from the variation in species composition among sites. This has been mainly related 
to spectral distance decay models in which species similarity decays once spectral 
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distance increases, using all pairwise distances among N plots, based on an a priori 
defined statistical sampling design.

Another powerful method to estimate beta diversity is related to the so-called 
spectral species concept (Féret and Asner 2014). This approach is based on the pre-
liminary unsupervised clustering of spectral data, assigning each pixel to a “spectral 
species.” After spectral clustering, the image is divided into homogeneous elemen-
tary surface units, and a dissimilarity metric is then used to compute pairwise dis-
similarity between each pair of surface units. Finally, the resulting dissimilarity 
matrix is processed using nonmetric multidimensional scaling to project elementary 
units in a 3-D Euclidean space, allowing the creation of a map in the standard red- 
green- blue (RGB) color system. Such a map expresses changes in species composi-
tion with changes in color or color intensity.

While the previously described methods are powerful in describing and estimat-
ing diversity from space, they are mainly related to spectral heterogeneity measure-
ment, with no direct relationship with drivers of diversity, such as climate drivers, 
which might be better estimated by thermal RS.

A very important milestone in biodiversity research was the development of 
plant functional types (PFTs) such as the Ellenberg indicator values (Schmidtlein 
2005) or the CSR-strategy types (C, competitive species; S, stress-tolerant species; 
R, ruderal species), which altered their functional traits as a consequence of the 
adaptation to changes in abiotic conditions and/or human pressures such as land-use 
intensity or management practices. Schmidtlein et al. (2012) developed the founda-
tions for linking RS with this biodiversity concept. Rocchini et al. (2018a) used this 
research as a basis for calculating a global biodiversity index, namely, “Rao’s Q.” 
The Rao’s Q is calculated on a set of CSR score maps (derived from Schmidtlein 
et al. 2012) to estimate the diversity of functional-type probability in space (Rocchini 
et al. 2018a, see Fig. 13.4).

Fig. 13.4 Rao’s quadratic diversity metric applied to a MODIS-derived 250 m pixel NDVI map of 
the world NDVI (date 2016-06-06, http://land.copernicus.eu/global/products/ndvi), resampled at 
2 km resolution with a moving window of 5 pixels. (Copyright: License number: 4466960473531. 
From Rocchini et al. (2018a)). Courtesy: Matteo Marcantonio
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13.2.2.3  Thermal RS

Thermal RS detects the energy emitted from Earth’s surface as electromagnetic 
radiation in the thermal infrared spectral range (TIR, 3–15 μm). This energy can be 
radiated by all bodies with a temperature above absolute zero and is dependent on 
the surface temperature and the thermal properties (emissivity) of the observed tar-
get (Kuenzer et al. 2013; Künzer and Dech 2013).

Land surface temperature (LST) is one of the most important state variables 
representing the coupled interaction of the surface energy and water balance from 
local to global scale (e.g., Kustas et al. 2003). LST is highly influenced by the radia-
tive, thermal, and hydraulic properties of the soil-plant-atmosphere system and has 
therefore been recognized as one of the high-priority parameters of the International 
Geosphere and Biosphere Program (IGBP, Townshend et al. 1994).

Various RS platforms and sensors currently provide TIR data at different spatial, 
spectral, and temporal resolutions. The most common include the Advanced Very 
High Resolution Radiometer (AVHRR) onboard the Polar Orbiting Environmental 
Satellites (POES); Landsat 5, 7, and 8; the MODIS sensor on board the NASA Terra 
and Aqua satellite, the Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) on the Terra Earth observing satellite platform; and Sea and 
Land Surface Temperature Radiometer (SLSTR) onboard the Sentinel-3 mission.

Although LST is rarely used by ecologists (Wang et al. 2010), a number of appli-
cations are closely linked to understanding landscape and biodiversity characteris-
tics. Most often, LST is taken as source to estimate evapotranspiration (see Krajewski 
et al. 2006 for a review). LST is highly controlled by atmospheric conditions, but 
also by stomata conductance and plant-available soil moisture (Bonan 2008). In this 
sense, monitoring of LST with sufficiently high spatial and temporal resolution is 
able to provide valuable information about the water and energy exchange between 
the soil-plant-atmosphere continuum and related photosynthetic activities of the 
vegetation (see Fig. 13.5). Differences in the spatiotemporal behavior of LST can 
therefore be related to different plant/species distributions and/or to differences 

Fig. 13.5 Optical (a) and TIR (b) image of a ScaleX field campaign test site in July 2016 at the 
TERENO pre-alpine grassland site, Fendt, Germany. Elevated land surface temperatures (yellow) 
are detected, especially for the rows of hay mounds facing the sun
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related to local energy, water, or nutrient conditions. Examples will be briefly 
described of methods to disentangle the effects of water, energy, and nutrients on 
plants in the context of vegetation.

Müller et al. (2014, 2016) applied principal component analysis (PCA) to extract 
dominant LST patterns from time series (28 scenes covering 12 years) of ASTER 
TIR images of the mesoscale Attert catchment in midwestern Luxembourg. The 
PCA-component values for each pixel were related to land use/vegetation data and 
to geological and soil texture data, indicating a strong information signal in the 
temporal dynamics of LST data with regard to plant diversity.

Environmental disturbances have been investigated (e.g., by Duro et al. 2007) 
making use of the negative relationship between vegetation density and 
LST. Mildrexler et al. (2007) proposed a disturbance detection index based on this 
principle that uses the 16-day MODIS Enhanced Vegetation Index (EVI) and 8-day 
LST.  They were able to successfully detect disturbance events such as wildfire, 
irrigated vegetation, precipitation variability, and the recovery of disturbed land-
scapes at the continental scale.

Sun and Schulz (2015) could demonstrate that an integration of TIR data from 
Landsat 5 and 8 was able to significantly enhance the classification results for dif-
ferent aggregation levels of land-use and land cover categories for a mesoscale 
catchment in Luxembourg. This indicates the high potential of TIR data to support 
more specific and selective plant species monitoring as relevant for biodiversity 
research.

Environmental stress induced by long-term heat waves and/or a limited avail-
ability of water is likely to reduce stomata conductance, limit transpiration, and 
thereby increase leaf surface temperature (Stoll and Jones 2007). The difference 
between air temperature and leaf temperature combined with information on vege-
tation density can serve as an indicator of plant stress. Hoffmann et al. (2016) used 
a spectral vegetation index and LST data from cameras mounted on UAVs to develop 
a water deficit index (WDI). The WDI was highly correlated to eddy covariance 
measurements of latent heat fluxes over a growing season, and that was used to map 
spatially distributed water demands of various crops.

Environmental stress may also cause changes in leaves and the structure of 
plants, dependent on their biophysiological characteristics. Buitrago et al. (2016) 
found that two plant species [European beech, (Fagus sylvatica) and rhododendron 
(Rhododendron catawbiense)], when exposed to either water or temperature stress, 
experience significant changes in TIR radiance. The changes in TIR in response to 
stress were similar within a species, regardless of the stress. However, changes in 
TIR spectra differed between species, and these differences could be explained by 
changes in the microstructure and biochemistry of leaves (e.g., cuticula).

Overall, the potential for exploiting LST information data in plant biodiversity 
research is manifold. While LST is easily measured by thermometers at the point 
scale, satellite RS TIR data are needed in order to derive LST routinely at high tem-
poral and spatial resolutions over large spatial extents. However, the derivation of 
LST from TIR data is a difficult task because such radiance measurements depend 
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not only on LST but also on surface emissivity and atmospheric conditions (Li and 
Becker 1993). Therefore, besides cloud detection and radiometric calibration, cor-
rections for emissivity and atmospheric effects have to be carried out. A large num-
ber of studies have addressed these issues in the past. It is beyond the scope of this 
section to summarize these studies, but an excellent review is provided by Dash 
et al. (2002).

13.2.2.4  Light Detection and Ranging (LiDAR)

LiDAR is an active RS technique in which short pulses of laser light emitted from a 
scanning device are distributed across a wide area and their reflections from objects 
are subsequently recorded by a sensor. The distance to the objects can be calculated 
from the elapsed time and the speed of light. The absolute position of the reflection 
can be reconstructed using the position recorded by the Global Positioning System 
(GPS) and the orientation of the sensor determined by the inertial navigation system 
(INS). The result is a set of 3-D points that represents the scanned surface from 
which the pulses were reflected. More detailed descriptions of LiDAR technology 
can be found in Popescu (2011) and Wehr and Lohr (1999).

The primary characteristic that makes LiDAR well suited for monitoring plant 
biodiversity, vegetation structure, and landscape diversity is the penetration of light 
beams below the forest canopy. When a LiDAR beam hits the top of the canopy, the 
beam is reflected by leaves, needles, and branches, and the reflection is recorded by 
the receiver. If the energy of the beam is still high when it hits the first reflective 
surface, the beam will split and can penetrate farther through openings in the canopy 
until it hits additional vegetation, which can again cause reflections. This process 
continues until a massive reflector, such as a tree trunk or the ground, reflects the 
beam or until the signal becomes too weak. These properties of LiDAR beams allow 
a detailed reconstruction of 3-D vegetation structures below the forest canopy, 
which cannot be provided by passive RS techniques (Koch et  al. 2014). Hence, 
LiDAR RS is a valuable technique for monitoring plant diversity and vegetation 
structure, and it adds a further dimension to the properties of optical RS.

LiDAR systems can be classified as discrete-return systems or full-waveform 
systems, based on the capabilities of data recording. At the onset of LiDAR devel-
opment, sensors were only able to record either the first or the last reflection of the 
LiDAR beam, which is generally the top of trees and the terrain, respectively. As 
LiDAR evolved, discrete-return systems were developed, which were able to record 
a fixed number of range measurements per LiDAR beam, usually up to four to five. 
The returns were based on thresholds, which were integrated into the proprietary 
detection method (Thiel and Wehr 2004).

With the more recently developed full-waveform systems, the entire pathway of 
the LiDAR beam through the canopy can be detected and recorded (Wagner and 
Ullrich 2004). The post-processing of this data can be applied to theoretically 
extract an unlimited number of echoes. Moreover, with Gaussian decomposition—
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the standard procedure for waveform decomposition—additional echo attributes, 
such as amplitude and intensity of the return signal, can be provided, which can 
support the classification process. As a result, full-waveform data provide a much 
more detailed characterization of the vertical vegetation structure. In this way, 
important indicators for vegetation structure and biodiversity, e.g., vegetation height 
and cover of the different vegetation layers, can be estimated with a lower bias and 
higher consistency (Reitberger et al. 2008).

Nowadays, laser-based instruments are mounted on all kinds of RS platforms, 
including stationary or mobile scanners and terrestrial-, drone-, and aircraft-based 
platforms (e.g., the well-established airborne LiDAR scanning). To record a variety 
of structural parameters, it is possible to combine information from LiDAR sensors 
with optical, thermal, or radar RS sensors (Joshi et al. 2015, 2016). Li et al. (2014) 
provide an overview of 3-D imaging techniques for describing plant phenotyping of 
vegetation. Rosell and Sanz (2012) review methods and applications of 3-D imag-
ing techniques for the geometric characterization of tree crops in agricultural sys-
tems. Wulder et al. (2012) provide a review of LiDAR sampling for characterizing 
landscapes.

The LiDAR systems used for ecological applications generally have a beam foot-
print of less than 1 m diameter on the ground. These so-called small-footprint sys-
tems are preferred because they provide a good link between the LiDAR beam and 
the structural vegetation attributes that could subtly change as a consequence of 
stress or damage, sometimes within individual trees. By comparison, large-footprint 
systems have beam diameters of up to scores of meters on the ground; e.g., the 
Geoscience Laser Altimeter System (GLAS) instrument mounted on the Ice, Cloud, 
and land Elevation Satellite (ICESat) platform has a footprint of 38 m (Schutz et al. 
2005). Such systems can be used to model and map broad vegetation structural 
attributes and are well suited for detecting structural vegetation characteristics 
across large areas.

The most important environmental application of LiDAR is the precise mapping 
of terrain and surface elevations. Such digital terrain models (DTMs) or digital sur-
face models (DSMs) can be useful in determining topographic information impor-
tant for plant growth and monitoring of vegetation structure and biodiversity, e.g., 
changes in vegetation height or density resulting from succession or natural distur-
bance (Heurich 2008). Many filtering methods have been developed to extract ter-
rain elevation from point clouds, which produces DTMs with high spatial resolution 
and root mean square errors (RMSEs) of 0.15–0.35  m (Andersen et  al. 2005; 
Heurich 2008; Sithole and Vosselman 2004). No other RS technique has the ability 
to deliver DTMs of similar quality within dense vegetation. Recent studies show 
that it is even possible for LiDAR to detect objects located on the ground surface. 
Coarse woody debris, as an example, is an important indicator of past disturbances 
that might influence biodiversity because it provides habitat to a multitude of plant 
and animal species and plays an important role in the forest carbon cycle.

Because of its characteristics, LiDAR is well suited for measuring biophysical 
parameters of vegetation, such as tree dimensions and canopy properties. Two main 
approaches have been developed over recent years. The area-based approach is a 
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straightforward methodology in which the height distribution of the LiDAR beam 
reflections is analyzed for a given area. In the first step, plenty of different “LiDAR 
metrics,” e.g., maximum height or fractional cover, are calculated for each area. The 
second step is model calibration, where these metrics are compared to on-the- 
ground survey data such as plant species richness, aboveground biomass (AGB), or 
vertical and horizontal vegetation structure. In the final step, the models are used to 
estimate the selected biodiversity indicators for large areas using square grid cells. 
Such an analysis is generally conducted using a priori stratification of structural 
vegetation types and plant species. In the years that followed, this methodology was 
proven to be able to determine key biophysical vegetation variables on a larger 
scale. To date, this method has been shown to deliver a precision of 4–8% for height, 
6–12% for mean diameter, 9–12% for basal area, 17–22% for stem number, and 
11–14% for volume estimations of boreal forests (Maltamo et  al. 2006; Næsset 
2002, 2007). Because of the highly accurate estimation of important vegetation 
structural parameters, the area-based approach was further developed and adapted 
to operational forest inventories in boreal forests of Scandinavia. Similar accuracies 
have also been achieved for the temperate zone, although the more complex 
 vegetation structures in this zone, especially the higher number of tree and plant 
species and higher amount of biomass, led to less accurate estimations and more 
effort in stratification and ground measurement to obtain species-specific results 
(Heurich and Thoma 2008; Latifi et al. 2010, 2015).

The second methodology is the individual-tree approach, which has the objective 
of extracting data on single trees and modeling the tree properties. The procedure 
consists of four steps. In the first step, individual trees are delineated by dividing 
each crown into segments with techniques originally used for raster analysis, such 
as watershed analysis and local maxima detection (Heurich 2008; Persson et  al. 
2002). However, these techniques do not take advantage of the full information of 
the 3-D point cloud, and therefore, trees beneath the crown surface cannot be 
detected. For this reason, new methods based on 3-D point clouds have been devel-
oped over recent years (Tang et al. 2013; Yao et al. 2012). When these novel tech-
niques are employed, more than 80% of the trees of the upper canopy level can be 
detected. Moreover, tree detection in the lower canopy is much improved compared 
to 2-D techniques. In the second step, parameters of each tree (e.g., height, species, 
and crown parameters) are derived. Tree height can be determined by measuring the 
distance of the highest reflection of a LiDAR beam within the tree segment and the 
DTM, with an accuracy of less than 2  m and a slight underestimation (Heurich 
2008). The third step is the model calibration of the biophysical parameters of the 
tree, namely, diameter at breast height (DBH), volume, and biomass, using trees 
measured on the ground as a reference. The tree crown can be modeled using con-
vex hulls and alpha shapes. The fourth step involves the application of these models 
to predict DBH, volume, and biomass of all trees delineated by LiDAR. Based on 
these crown representations, basic attributes reflecting tree health can be derived, 
e.g., total volume, crown length, crown area, and crown base height (Yao et  al. 
2012). The extracted parameters of individual trees also form the basis for identify-
ing the tree species by calculating point cloud and waveform features within the 2-D 

13 A Range of Earth Observation Techniques for Assessing Plant Diversity



328

or 3-D representation of the tree and with the help of classification techniques 
(Reitberger et al. 2008). While differentiation between deciduous and coniferous 
trees is highly accurate (>80%, up to ca. 97%), differentiation within these classes 
is more difficult and leads to a higher classification error. Moreover, it is possible to 
distinguish between living trees, standing dead trees, and snags (Yao et al. 2012) 
and to map dead trees at the plot or stand level. However, 3-D LiDAR has its limita-
tions in differentiating between trees species and dead trees when not combined 
with multispectral optical data. One drawback of the individual-tree approach is that 
the LiDAR beam loses some transmission on its way through the canopy and is 
therefore not always suitable for smaller understory trees, which results in their 
underestimation. To overcome this problem, methods have been developed to pre-
dict diameter distributions of forest stands based on detectable trees in the upper 
canopy and LiDAR-derived information on the vertical forest structure and density 
(Lefsky et al. 2002).

In addition to the traditional parameters related to forestry, a multitude of traits 
that describe the ecological conditions of the forest can be estimated with LiDAR 
sensors. One key element for assessing plant diversity and vegetation structure is 
canopy cover, which is defined as the projection of the tree crowns onto the ground 
divided by ground surface area. This parameter can be easily obtained from LiDAR 
data by dividing the number of returns measured above a certain height threshold by 
the total number of returns. Many studies have proven the strong (R2 > 0.7) relation-
ship between this LiDAR metric and ground measurements. By using hemispherical 
images or other ground-based instruments for calibration, leaf area index (LAI) and 
solar radiation can also be derived from LiDAR data with a high precision over large 
areas (Moeser et al. 2014). Because canopy metrics are affected by sensor and flight 
characteristics, it is recommended that each campaign be calibrated to obtain high- 
quality results. However, it has been shown that even without calibration, fairly 
reliable results can be obtained.

Vertical vegetation structure is highly relevant for the description of forest and 
vegetation heterogeneity and highly important for biodiversity studies. A widely 
used LiDAR metric for representing vertical canopy complexity is the coefficient of 
variation. High coefficient values correspond to more diverse multilayer stands, 
whereas low values represent single-layer stands. The coefficient of variation can be 
applied at point clouds, the digital crown model, or individual trees. Zimble et al. 
(2003) applied this principle and classified vegetation types according to stand 
structure with an overall accuracy of 97%.

Another approach is the partitioning of the vertical structure into different height 
layers in relation to ecological importance. Latifi et al. (2015) divided the canopy 
into height layers according to phytosociological mapping standards and found a 
strong relationship to various LiDAR metrics in regression models. Similar 
approaches were used by Ewald et al. (2014) to represent understory offering pro-
tection for birds and deer and to detect forest regeneration. A more recent study 
applied a 3-D segmentation algorithm to estimate regeneration cover with an accu-
racy of 70%. LiDAR-derived information about the vertical structure is also used 
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for the assessment of forest fuels and their vertical distribution, which are important 
input variables in forest fire models used in fire management.

In summary, LiDAR RS is a powerful tool for monitoring vegetation structure 
and plant diversity. It delivers detailed and accurate information about forest proper-
ties down to the scale of the individual tree and is therefore regarded as the gold 
standard for determining vegetation structure. Nowadays, LiDAR is widely applied 
in RS research as a reference to test the accuracy of other methods and is used in 
practical forest management in the boreal zone of Scandinavia (Næsset 2007). The 
development of new sensors will lead to multi- or hyperspectral LiDAR technology, 
which will combine the advantages of today’s LiDAR and optical sensors. These 
systems will be able to collect accurate 3-D information and calibrated spectral 
information without facing the problems of varying illumination in the tree crowns. 
Furthermore, the resolution of the data will increase, thereby enabling parameter 
extraction at the branch level.

13.2.2.5  Radar

Several reviews have been conducted on radar alone or radar and optical sensors for 
vegetation applications relevant to habitat and biodiversity. They typically include 
classification of vegetation or land cover types, biophysical modeling of parameters 
such as biomass or tree height, and ecosystem disturbance detection and mapping 
(e.g., Balzter 2001; Treuhaft et al. 2004; Lu 2006, which includes summaries of four 
previous reviews; Lutz et al. 2008; Bergen et al. 2009; Lowry et al. 2009; Koch 
2010; Nagendra et  al. 2013; Tiner et  al. 2014; White et  al. 2015; Timothy et  al. 
2016; Baltzer 2017).

Systems and Techniques

Active radar is the focus of this section because the resolution of passive sensors is 
generally too coarse for all but large extent studies. In active radar, transmitted 
pulses interact with scattering elements of the surface in terms of their dielectric 
properties, size, and arrangement. In vegetation, moisture (increasing dielectric 
constant) and more complex stem-branch-leaf arrangements result in increased 
backscatter intensity. Much research has been conducted using physically based 
models to characterize and understand backscatter effects in vegetated canopies 
(e.g., Sun and Ranson 1995; Ningthoujam et al. 2016). Spatial and temporal varia-
tions in these properties associated with different vegetation types, age distribution, 
health, and management provide information or indicators of potential habitat and 
biodiversity. Radar data are available at different frequencies/wavelengths; X-, C-, 
and L-bands (2.5–3.75 cm, 3.75–7.5 cm, and 15–30 cm wavelengths, respectively) 
are the most common on satellite platforms. S-band (7.5–15 cm) has been deployed 
on a couple of satellites, and new S- and P-band (30–100 cm) satellite sensors are 
planned for the near future (e.g., NISAR L- and S-bands; NovaSAR S-band; 
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BIOMASS P-band). Backscatter of shorter wavelengths is generally from the upper 
canopy, while longer wavelengths penetrate farther into vegetation. Combining 
shorter and longer wavelength data can be advantageous to detect contributions of 
multiple scattering from different vertical portions of the canopy as well as ground 
surface scattering and double bounce ground-stem scattering. Transmitted and 
received radar signal polarizations [commonly horizontal (H) and vertical (V)] can 
provide information on vegetation composition and structure. Co-polarized signals 
(e.g., HH) respond more to trunk-ground configurations (double bounce scattering), 
particularly at longer wavelengths, while cross-polarizations (e.g., HV) respond 
more to canopy woody biomass (Ningthoujam et al. 2017). Combinations such as 
ratios (e.g., HH/HV) can therefore enhance spatial differences in scattering types 
and magnitude due to varying vegetation density (Mitchard et al. 2011). Similarly, 
steeper incidence angles generally penetrate farther into the canopy, particularly in 
leaf-on conditions, but multiple angles may enhance differences in vertical structure 
(Henderson and Lewis 1998). All of the above characteristics related to the degree 
of canopy penetration provide opportunity for analysis of vertical structural 
 complexity and composition diversity by using multiple bands, polarizations, and 
incidence angles. Radar image texture information has also been found to be useful 
in classification (Simard et al. 2000) and biophysical modeling (Kuplich et al. 2005).

Polarimetric data, where phase information is preserved (Ulaby et  al. 1987), 
allows additional analysis of polarization parameters and, through decomposition 
analysis, the relative contributions from the various scattering mechanisms (e.g., 
surface, volume, double bounce) that are associated with canopy structural charac-
teristics. Commonly applied decomposition techniques include (van Zyl 1989; 
Cloude et al. 1996; Freeman and Durden 1998; Yamaguchi et al. 2005; Touzi 2007). 
Several others were designed to build on or correct issues with previous techniques 
(Hong and Wdowinski 2014). The Interferometric SAR (InSAR, e.g., Balzter 
(2001)), provides a plain language description) incorporates transmission from two 
different angles either simultaneously or in repeat passes (less preferable given 
potential decorrelation of the response signals between passes). The phase differ-
ences between the radar response signals can be used to estimate the scattering 
phase height center, which is associated with canopy density and arrangement. They 
can also be used to generate digital elevation models (DEMs), with longer wave-
lengths that penetrate the canopy being more suitable. Using multiple parallel base-
lines, SAR tomography has been used to construct a 3-D representation of a given 
volume such as a forest (e.g., Reigber and Moreira 2000).

Classification and Biophysical Modeling Applications

As with other RS technologies, landscape or vegetation diversity as an indicator of 
biodiversity can be mapped through thematic classification. This can be accom-
plished across a broad gradient from nonvegetated to dense vegetation classes, to 
map landscape cover types (e.g., Devaney et al. 2015) that may be associated with 
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the spatial distribution of biodiversity. For example, within the context of develop-
ing understanding of the spatial distribution of sensitive arctic shore habitat and 
biodiversity areas in the event of oil spills, Banks et al. (2014a) used decomposition 
parameters in a comparison of three unsupervised polarimetric classifiers for their 
potential in mapping multiple classes of substrate (nonvegetated), tundra vegeta-
tion, and wetland type. Similarly, Varghese et  al. (2016) classified water, settle-
ments, agriculture, shrub/scrub, and three forest density classes in a comparison of 
parameters derived from six decomposition techniques. In an analogous manner, 
specific classes within an ecotype can be mapped. For example, mapping the diver-
sity of given classes within a wetland complex (e.g., Touzi and Deschamps 2007; 
Gosselin et al. 2013; Dingle Robertson et al. 2015; Hong et al. 2015; Dubeau et al. 
2017) can aid identification of the variety of habitat conditions available and poten-
tial biodiversity. In general, radar data have not been found to provide consistently 
better overall classification accuracy than optical data. However, since radar data are 
typically complementary and not highly correlated with optical data, they can pro-
vide additional information for certain vegetation classes that can be distinguished 
by structure in cases where optically derived spectral reflectance and vegetation 
indices are similar. Thus, combining radar and optical imagery has often been 
shown to improve the accuracy of such classes over either data type alone (e.g., 
Bergen et al. 2007; Wang et al. 2009; Bwangoy et al. 2010; Banks et al. 2014b).

An alternative approach to thematic classification is estimation of vegetation 
structure parameters that can serve as indicators of potential habitat diversity or 
biodiversity, for example, the average or spatial heterogeneity of AGB, LAI, vegeta-
tion height, and stem and branch parameters. Luckman et al. (1997), Lucas et al. 
(2006), and Le Toan et al. (2004), among others, have reported that the backscatter- 
AGB relationship typically saturates in the range of 100–150 t/ha. However, AGB 
spatial variability can be mapped in environments with lower vegetation density 
(e.g., Häme et al. 2013), and efforts to produce suitable models with a higher satura-
tion threshold by improving data information content are common. For example, 
use of the following has proven beneficial: cross-polarized (HV) data rather than 
co-polarized; longer wavelengths that penetrate deeper into the canopy (Santos 
et  al. 2003); ratios such as VV/HH (Manninen et  al. 2009 for LAI); shorter-to- 
longer wavelength ratios such as C−/L-bands (Foody et  al. 1997); averaging of 
multitemporal data sets to reduce moisture/rain effects (Englhart et al. 2011); and 
integrating optical and radar data (Vaglio et al. 2017). Imhoff et al. (1997) modeled 
canopy parameters using steep incidence angle C-, L-, and P-band airborne radar 
and found strong correlations for C-HV and LAI, L-VV and branch surface area or 
volume, and P-VV with bole surface area or volume; these relationships were then 
used to map broad avian habitat classes. Bergen et al. (2009) combined biomass 
estimates from C- and L-band backscatter with Landsat vegetation classification, 
thereby improving habitat mapping for three bird species over use of vegetation 
type alone.

InSAR has been used to estimate canopy height and height variance, which can 
be an indicator of vegetation type, structural complexity, and age diversity. Canopy 
height is most commonly estimated from the difference between scattering phase 
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height center estimates derived from short wavelength (X- or C-band) InSAR and a 
ground DEM derived from longer wavelength InSAR (L- or P-bands, Neeff et al. 
2005; Balzter et al. 2007a) or from another source such as LiDAR (e.g., Kellndorfer 
et  al. 2004; Andersen et  al. 2008; Tighe 2012). Tighe et  al. (2009) applied this 
approach with the addition of correction factors for various forest ecotypes in US 
and Canadian environments from semiarid to boreal. Integrating polarimetric 
response with InSAR (i.e., PolInSAR; Cloude and Papathanassiou 1998) can 
improve InSAR estimates of tree height (e.g., Balzter et al. 2007b). Tomography has 
also shown promise in modeling the vertical distribution of canopy biomass, but 
multiple acquisitions must be conducted within a short time to minimize temporal 
decorrelation. The DEMs produced from InSAR can also be used to generate topo-
graphic indices for analysis of topographic complexity or roughness related to habi-
tat diversity and biodiversity (Turner et al. 2003; Kuenzer et al. 2014). Fusion of 
optical imagery and/or LiDAR with InSAR (e.g., as reviewed in Treuhaft et  al. 
2004) can also improve vertical canopy and topographic information.

Mapping of disturbance or environmental change can serve as an indicator of 
potential impacts on habitat diversity and biodiversity. Many studies have been con-
ducted in diverse applications that cannot be fully reviewed here. Most early appli-
cations were in mapping of deforestation, particularly in tropical regions where 
deforestation had become a major issue (e.g., Rignot et al. 1997; van der Sanden and 
Hoekman 1999). Temporal data have become widely used in land cover change 
analysis using classification approaches (e.g., Thapa et al. 2013), analysis of back-
scatter change (e.g., Whittle et al. 2012; Mermoz and Le Toan 2016), and biophysi-
cal modeling for biomass loss (e.g., Mitchard et  al. 2011). Other major radar 
applications of environmental change with implications for biodiversity impacts are 
burn and inundation detection and mapping. Early fire impact studies focused on 
backscatter variations related to burn intensity classes (e.g., Kasischke et al. 1992). 
More recent work has included temporal backscatter data in pre−/postburn analysis 
(e.g., Tanase et al. 2015) and polarimetric analysis and decomposition in modeling 
biomass changes due to fire (Martins et al. 2016). Radar is particularly useful in 
detecting inundation under vegetated canopies due to specular reflection off the 
water surface; in the case of inundated forests, penetration of the canopy by longer 
wavelengths occurs with double bounce scattering off the water surface and tree 
trunks (e.g., Kim et al. 2009) and phase differences between different polarizations 
(e.g., Rignot et al. 1997).

Overall, use of radar for biodiversity and landscape diversity analysis, modeling, 
mapping, and monitoring follows similar approaches to optical RS.  Diversity of 
land cover types or specific classes within a given ecotype may be directly mapped 
using classification or modeling, while estimation of biophysical variables can serve 
as indicators of spatial heterogeneity and potential habitat diversity or biodiversity. 
The main contributions of radar are in its unique response to vegetation structure 
that complements spectral reflectance characteristics of vegetation in the optical 
regions. With the multitude of wavelengths, incidence angles, and polarizations 
available, as well as the capability to acquire and process InSAR and polarimetric 
data, much promise has been shown for mapping and monitoring land cover diver-
sity- and biodiversity-related vegetation metrics. New satellite systems are being 
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developed, and particularly the 2021 BIOMASS P-band InSAR mission (Le Toan 
et  al. 2011) will provide consistent means for global biomass mapping and 
monitoring.

13.3  Conclusion and Further Work

Traits, drivers, and effects on biodiversity exist on all spatiotemporal scales. Air- 
and spaceborne RS data capture processes and patterns in ecosystems, but often 
without the knowledge of the cause of the phenomenon and real high-frequency 
ground information. Therefore, close-range RS platforms that record RS informa-
tion at high frequency must be coupled with air- and spaceborne RS platforms (see 
Fig. 13.6).

No monitoring approach alone is sufficient, comprehensive, cost-effective, and 
flexible enough to perform vegetation health monitoring from local to global scales 
and for short- to long-term processes as well as to monitor changes in phylo-, taxo-
nomic, functional, and trait diversity and to assess the resilience of ecosystems. 
Therefore, the development and application of a multisource vegetation diversity 
and health monitoring network (MUSO-VDH-MN) is important where multisource 
data (close-range, air-, and spaceborne RS data) as well as different in-situ monitor-
ing approaches can be linked in an effort to compensate for the shortcomings of one 
approach with the advantages of another and to achieve additional benefits for VH 
monitoring. A future MUSO-VDH-MN should therefore contain the following ele-
ments (see Fig. 13.7):

Permanent  
Sensor Networks

Earth Observation Satellites 
(e.g. ENVISAT, Landsat, 
Sentinel, EnMAP)

Receiving station for 
transferring in-situ dataTransferring Remote 

Sensing Data

Value-added Earth 
Observation Data 
Products

Development / Validation of Value 
Added Products

Internet

Multi-parameter Data

Mobile ad-hoc 
Sensor NetworksAND

e

Fig. 13.6 Linking different approaches (high-frequency WSNs up to spaceborne satellites) with 
relative frequency monitoring, sensors, and different platforms of RS to better describe, explain, 
predict, and understand vegetation diversity with RS techniques as well as improve the calibration 
and validation of RS data. (From Lausch et al. 2018a)
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 (i) Coupling of the different monitoring approaches (in-situ and RS) for plant 
diversity.

 (ii) The integration and linking of multisource data and RS platforms. MUSO- 
VDH- MN should integrate the following data and site survey platforms:

Species/habitats: Data from site surveys for species, species lists, metabarcod-
ing, microgenomics (Bush et al. 2017), and phenotyping (Deans et al. 2015) 
and data from museums, lysimeters, plant phenomic facilities (Furbank 
2009), controlled environmental facilities (ecotrons, Lawton et al. 1993), 
long-term ecological research (Mueller et  al. 2010), spectral laboratory 
experiments, and biodiversity ecosystem functioning experiments 
(Bruelheide et al. 2014)
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Fig. 13.7 Overview of in-situ approaches—the phylogenetic species concept (PSC), the biologi-
cal species concept (BSC), the morphological species concept (MSC), and the RS-spectral trait/
spectral trait variation (RS-ST/STV) concept, which integrates the close-range RS approaches and 
the air−/spaceborne RS approach. The different in-situ and RS approaches are crucial for deter-
mining phylo-, taxonomic, structural, trait diversity as well as functional diversity, in order to be 
able to monitor and assess status, stress, shifts, disturbances, or resource limitations at different 
levels of vegetation organization. Components that need to be included for a future multisource 
vegetation diversity and health monitoring network (MUSO-VDH-MN): (I) linking of existing 
monitoring approaches; (II) integration of existing data, networks, and platforms; and (III) the use 
of data science as a bridge for handling and coupling big vegetation diversity and health data. 
(Modified after Lausch et al. 2018a)
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RS: optical (multispectral, hyperspectral), thermal, radar, LiDAR data, labora-
tory, tower, camera traps, WSNs, drones, and close-range, air- and space-
borne RS platforms. Additionally, it should link monitoring databases, 
networks, citizen science information, abiotic (soil, water, air) information, 
and social and economic information.

 (iii) Data science, linked open data, and semantic web as a bridge for understand-
ing and monitoring vegetation diversity. For further information see also 
Lausch et al. (2015c, 2018a, b) (Fig. 13.7).
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