1,142 research outputs found

    Coexistence of two main folded G-quadruplexes within a single G-rich domain in the EGFR promoter

    Get PDF
    EGFR is an oncogene which codifies for a tyrosine kinase receptor that represents an important target for anticancer therapy. Indeed, several human cancers showed an upregulation of the activity of this protein. The promoter of this gene contains some G-rich domains, thus representing a yet unexplored point of intervention to potentially silence this gene. Here, we explore the conformational equilibria of a 30-nt long sequence located at position -272 (EGFR-272). By merging spectroscopic and electrophoretic analysis performed on the wild-type sequence as well as on a wide panel of related mutants, we were able to prove that in potassium ion containing solution this sequence folds into two main G-quadruplex structures, one parallel and one hybrid. They show comparable thermal stabilities and affinities for the metal ion and, indeed, they are always co-present in solution. The folding process is driven by a hairpin occurring in the domain corresponding to the terminal loop which works as an important stabilizing element for both the identified G-quadruplex arrangements

    Physical activity and hypocaloric diet recovers osteoblasts homeostasis in women affected by abdominal obesity.

    Get PDF
    Obesity is a multifactorial disease linked to metabolic chronic disorders such as diabetes, and hypertension. Also, it has recently been associated with skeletal alterations and low bone mineral density. We previously demonstrated that exposure of osteoblasts to sera of sedentary subjects affected by obesity alters cell homeostasis in vitro, leading to disruption of intracellular differentiation pathways and cellular activity. Thus, the purpose of the present study has been to evaluate whether sera of sedentary obese women, subjected to physical activity and hypocaloric diet, could recover osteoblast homeostasis in vitro as compared to the sera of same patients before intervention protocol. To this aim, obese women were evaluated at time 0 and after 4, 6, and 12 months of individualized prescribed physical activity and hypocaloric diet. Dual-energy-X-ray absorptiometry measurements were performed at each time point, as well as blood was collected at the same points. Cells were incubated with sera of subjects before and after physical activity as described: obese at baseline and after for 4, 6, and 12 months of physical activity and nutritional protocol intervention. Osteoblasts exposed to sera of patients, who displayed increased lean and decreased fat mass (from 55.5 ± 6.5 to 57.1 ± 5.6% p ≤ 0.05; from 44.5 ± 1.1 to 40.9 ± 2.6% p ≤ 0.01 respectively), showed a time-dependent increase of Wnt/β-catenin signaling, versus cells exposed to sera of obese patients before intervention protocol, suggesting recovery of osteoblast homeostasis upon improvement of body composition. An increase in β-catenin nuclear accumulation and nuclear translocation was also observed, accompanied by an increase in Adiponectin receptor 1 protein expression, suggesting positive effect on cell differentiation program. Furthermore, a decrease in sclerostin amount and an increase of type 1 procollagen amino-terminal-propeptide were depicted as compared to baseline, proportionally to the time of physical activity, suggesting a recovery of bone remodeling modulation and an increase of osteoblast activity induced by improvement of body composition. In conclusion, our results show for the first time that sera of obese sedentary women who increased lean mass and decreased fat mass, by physical activity and hypocaloric diet, rescue osteoblasts differentiation and activity likely due to a reactivation of Wnt/β-catenin-pathway, suggesting that a correct life style can improve skeletal metabolic alteration induced by obesity

    Pharmacophore Hybridization To Discover Novel Topoisomerase II Poisons with Promising Antiproliferative Activity

    Get PDF
    We used a pharmacophore hybridization strategy to combine key structural elements of merbarone and etoposide and generated new type II topoisomerase (topoII) poisons. This first set of hybrid topoII poisons shows promising antiproliferative activity on human cancer cells, endorsing their further exploration for anticancer drug discovery

    RNA-binding proteins hnRNP A2/B1 and CUGBP1 suppress fragile X CGG premutation repeat-induced neurodegeneration in a Drosophila model of FXTAS

    Get PDF
    Fragile X-associated tremor/ataxia syndrome (FXTAS) is a recently described neurodegenerative disorder of older adult carriers of premutation alleles (60–200 CGG repeats) in the fragile X mental retardation gene (FMR1). It has been proposed that FXTAS is an RNA-mediated neurodegenerative disease caused by the titration of RNA-binding proteins by the CGG repeats. To test this hypothesis, we utilize a transgenic Drosophila model of FXTAS that expresses a premutation-length repeat (90 CGG repeats) from the 5′ UTR of the human FMR1 gene and displays neuronal degeneration. Here, we show that overexpression of RNA-binding proteins hnRNP A2/B1 and CUGBP1 suppresses the phenotype of the CGG transgenic fly. Furthermore, we show that hnRNP A2/B1 directly interacts with riboCGG repeats and that the CUGBP1 protein interacts with the riboCGG repeats via hnRNP A2/B1

    Early molecular diagnosis of aspergillosis in a patient with acute myeloid leukaemia

    Get PDF
    Diagnosis of invasive fungal infection remains challenging. Here we report a case of early diagnosis of invasive aspergillosis in a neutropenic patient affected by acute myeloid leukaemia, achieved through the detection of Aspergillus fumigatus species-specific ribonucleic acid sequences by a sensitive multiplex real-time polymerase chain reaction-based molecular assay. Thanks to the early diagnosis, targeted therapy was promptly established and the severe fungal infection controlled, allowing the patient to subsequently receive allogeneic hematopoietic stem cell transplantation from a haploidentical donor, her only curative option. Also in this instance, targeted secondary antifungal prophylaxis with voriconazole avoided any other fungal infection afterwards. This report suggests how the implementation of molecular assays in combination with routine diagnostic procedures, can improve microbiological diagnosis in sepsis, particularly in case of fungal infection, difficult to detect with standard microbiological culture methods

    Reduction of serum IGF-I levels in patients affected with Monoclonal Gammopathies of undetermined significance or Multiple Myeloma. Comparison with bFGF, VEGF and K-ras gene mutation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serum levels of IGF-I in patients affected with multiple myeloma (MM) have been scarcely studied. The present study is aimed to explore this point comparing 55 healthy subjects, 71 monoclonal gammopaties of uncertain significance (MGUS) and 77 overt MM patients. In the same subjects, basic FGF and VEGF, have been detected. All three mediators were analyzed in function of K-<it>ras </it>mutation and melphalan response. Concerning IGF-I, two representative monitoring examples have also been added.</p> <p>Methods</p> <p>Cytokine determinations were performed by commercially available ELISA kits, while K12-<it>ras </it>mutation was investigated on genomic DNA isolated from bone marrow cell specimens by RFLP-PCR assay.</p> <p>Results</p> <p>Significant reductions of IGF-I levels were observed in MGUS and MM as compared with healthy controls. In addition, MM subjects showed significantly decreased serum IGF-I levels than MGUS. Conversely, increasing levels were observed for bFGF and VEGF, molecules significantly correlated. A multivariate analysis corrected for age and gender confirmed the significant difference only for IGF-I values (P = 0.01). K12-<it>ras </it>mutation was significantly associated with malignancy, response to therapy and with significantly increased serum bFGF levels.</p> <p>Conclusion</p> <p>IGF-I reduction in the transition: Controls→MGUS→MM and changes observed over time suggest that IGF-I should be furtherly studied in future clinical trials as a possible monitoring marker for MM.</p

    Immunomics-guided discovery of serum and urine antibodies for diagnosing urogenital schistosomiasis:A biomarker identification study

    Get PDF
    Background: Sensitive diagnostics are needed for effective management and surveillance of schistosomiasis so that current transmission interruption goals set by WHO can be achieved. We aimed to screen the Schistosoma haematobium secretome to find antibody biomarkers of schistosome infection, validate their diagnostic performance in samples from endemic populations, and evaluate their utility as point of care immunochromatographic tests (POC-ICTs) to diagnose urogenital schistosomiasis in the field. Methods: We did a biomarker identification study, in which we constructed a proteome array containing 992 validated and predicted proteins from S haematobium and screened it with serum and urine antibodies from endemic populations in Gabon, Tanzania, and Zimbabwe. Arrayed antigens that were IgG-reactive and a select group of antigens from the worm extracellular vesicle proteome, predicted to be diagnostically informative, were then evaluated by ELISA using the same samples used to probe arrays, and samples from individuals residing in a low-endemicity setting (ie, Pemba and Unguja islands, Zanzibar, Tanzania). The two most sensitive and specific antigens were incorporated into POC-ICTs to assess their ability to diagnose S haematobium infection from serum in a field-deployable format. Findings: From array probing, in individuals who were infected, 208 antigens were the targets of significantly elevated IgG responses in serum and 45 antigens were the targets of significantly elevated IgG responses in urine. Of the five proteins that were validated by ELISA, Sh-TSP-2 (area under the curve [AUC]serum=0·98 [95% CI 0·95-1·00]; AUCurine=0·96 [0·93-0·99]), and MS3_01370 (AUCserum=0·93 [0·89-0·97]; AUCurine=0·81 [0·72-0·89]) displayed the highest overall diagnostic performance in each biofluid and exceeded that of S haematobium-soluble egg antigen in urine (AUC=0·79 [0·69-0·90]). When incorporated into separate POC-ICTs, Sh-TSP-2 showed absolute specificity and a sensitivity of 75% and MS3_01370 showed absolute specificity and a sensitivity of 89%. Interpretation: We identified numerous biomarkers of urogenital schistosomiasis that could form the basis of novel antibody diagnostics for this disease. Two of these antigens, Sh-TSP-2 and MS3_01370, could be used as sensitive, specific, and field-deployable diagnostics to support schistosomiasis control and elimination initiatives, with particular focus on post-elimination surveillance. Funding: Australian Trade and Investment Commission and Merck Global Health Institute
    corecore