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ABSTRACT: We used a pharmacophore hybridization strategy to combine key
structural elements of merbarone and etoposide and generated new type II
topoisomerase (topoII) poisons. This first set of hybrid topoII poisons shows
promising antiproliferative activity on human cancer cells, endorsing their further
exploration for anticancer drug discovery.

■ INTRODUCTION

Human type II topoisomerase (topoII) enzymes are essential
for DNA topology modification and are a validated anticancer
drug target.1−3 Several topoII inhibitors are clinically available,
but drug resistance and the severe side effects of topoII-targeted
drugs are an issue. Novel and safer topoII inhibitors for better
anticancer therapeutics are thus required.4−6

TopoII inhibitors are divided into different classes according
to their chemical scaffold or their molecular mechanism of
action.7−10 “TopoII poisons” is the term for topoII targeted
agents that act by trapping the covalent topoII/DNA cleavage
complex, which is formed during the catalytic cycle required for
DNA topology modulation. One notable topoII poison is the
chemotherapy drug etoposide (Figure 1). It was the first
successful anticancer agent to target topoII and is still used to
treat a variety of cancer types, despite the chances of severe side
effects.4,11

Merbarone is another well-known topoII blocker and one of
the first and most promising topoII inhibitors (Figure 1).12

Merbarone is a thiobarbituric derivative (6-hydroxy-4-oxo-N-
phenyl-2-thioxo-1H-pyrimidine-5-carboxamide) that impairs
cell cycle and proliferation of different cancer cell lines.12

Merbarone underwent clinical trials as a treatment for various
types of cancer.13,14 However, these trials were halted due to
insufficient anticancer activity and nephrotoxicity issues.15 That
is, this promising anticancer chemical scaffold did not generate
the expected efficacy in vivo.

■ RESULTS AND DISCUSSION
Here, we report on the design, synthesis, and initial biological
evaluation of a first set of new compounds designed via a
pharmacophore hybridization strategy.16,17 Specifically, we
introduced key pharmacophoric elements of etoposide (E-
ring)11 and merbarone (thiobarbituric core)12 into a new
hybrid scaffold (Figure 1). Importantly, compared to the
template compounds, our new compounds show boosted
potency in blocking topoII function and promising antiprolifer-
ative activity against human cancer cells.
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Figure 1. TopoII poisons designed via a pharmacophore hybridization
strategy. The new hybrid functional scaffold (center) is obtained by
merging merbarone’s thiobarbituric core, with different decorations of
the two heterocycle nitrogen atoms (left) and with the E-ring of
etoposide (right).

Brief Article

pubs.acs.org/jmc

© 2017 American Chemical Society 1375 DOI: 10.1021/acs.jmedchem.7b01388
J. Med. Chem. 2018, 61, 1375−1379

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
PA

D
O

V
A

 o
n 

N
ov

em
be

r 
27

, 2
01

9 
at

 1
1:

50
:5

9 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

pubs.acs.org/jmc
http://dx.doi.org/10.1021/acs.jmedchem.7b01388
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


In detail, these new hybrid molecules were generated based
on merbarone’s thiobarbituric core, which was modified as
follows: (1) introduction of two ethyl groups or phenyl rings at
each nitrogen of the thiobarbituric core, where lipophilic
substituents at those nitrogen atoms have been shown to
improve merbarone’s cell permeability;18−20 (2) functionaliza-
tion of the phenyl ring in merbarone to mimic the pendent
aromatic ring (E-ring) of etoposide, which was demonstrated to
be essential to block topoII activity.11 This modification was
planned to fine-tune the drug−target interactions at the topoII/
DNA cleavage complex, as suggested by molecular docking (see
data below and in Supporting Information). The resulting
hybrid scaffold was synthesized using a general procedure for
amide derivatives synthesis (Scheme 1).21 We thus obtained 16
new hybrid compounds with different functionalizations (see
Supporting Information for complete list).

Initially, all compounds were tested against human topoII in
a relaxation inhibition assay (see Supporting Information). The
N,N′-diphenyl derivatives (1−8) were consistently much more
active than the corresponding diethyl ones (9−16; see
Supporting Information). Table 1 reports the IC50 values for
the most active N,N′-diphenyl derivatives (1−5, Scheme 1; see
Supporting Information for 6−16). The improved activity of
our N,N′ -diphenyl (vs N,N′ -diethyl) derivatives can be
rationalized by their predicted binding mode at the cleavage
site. Indeed, molecular modeling and docking22,23 showed that
N,N′ -diphenyl derivatives formed good contacts with topoII
residues located in front of both DNA grooves (Asp479 and

Arg503, more on this below). Thus, compared to the
corresponding diethyl derivatives, N,N′ -diphenyl derivatives
likely act as a better linker between distal topoII/DNA
structural elements, mimicking etoposide’s binding mode (see
Supporting Information). This is further corroborated by the
experimentally measured cleavage product formation, which
was only generated by N,N′ -diphenyl derivatives (see Table 1
and Supporting Information).
Compound 1, which bears a 3,5-dimethoxy-4-phenol frag-

ment (like the E-ring in etoposide), was equipotent to
merbarone (Table 1), with an IC50 of 120 μM. Replacing the
hydroxyl group of 1 with a methoxy lead to a complete loss of
activity (compound 6; see Supporting Information). An equally
negative effect was observed when the same hydroxyl group in
1 was removed (compound 7; see Supporting Information).
Compound 2, in which the two methoxy groups were removed,
was slightly worse than 1, with an IC50 of 150 μM. These
results are in agreement with previous studies that demonstrate
the crucial role of the etoposide E-ring substituents for topoII
inhibition.24,25

Interestingly, conserving only one methoxy group in the
meta position, as in 3, returned an IC50 of 30 μM, with a 4-fold
increase of potency compared to merbarone and etoposide.
Replacing this methoxy in 3 with a hydroxyl group, as in 4,
significantly decreased topoII inhibitory activity (IC50 = 200
μM). Finally, a naked phenyl ring, as in 5, showed an IC50 of 5
μM, which is 24-fold better than merbarone and etoposide,
although the topoII/DNA cleavage complex formation was
reduced (see below).
The molecular mechanisms leading to the topoII inhibition

by the five most active compounds, 1−5, were further
characterized (see Table 1). UV measurements showed that
DNA alone does not produce variations of the ligand
absorbance induced by DNA. This suggests a lack of relevant
binding of all our new derivatives to the DNA alone.
Consistently, as already observed with merbarone,12,26 CD
titration of ctDNA with the compounds presented in this work
showed their inability to alter DNA structural arrangement in
the absence of topoII. As a consequence, this excludes an
interference in the DNA-topoII ligation step as a mechanism of
inhibition. Intriguingly, these N,N′ -diphenyl derivatives

Scheme 1. 2-Thiobarbituric Acid Derivatives Synthesisa

a(A) Ethyl chloroformate (1.05 equiv), DMAP (0.08 equiv), pyridine
(1.25 equiv), DCM, N2, 0 °C to rt, 16 h, yield II 71 %, yield IV 60 %;
(B) R2-NH2 (1 equiv), DMF, N2, 100 °C, 30 min.

Table 1. Data on Compound Potency and Properties

compd
topoII inhibitiona

(μM)
cleavage complexb

(μM)
DNA

interactionc
minor
grooved

HeLae

(μM)
MCF7e

(μM) A549e (μM)
DU145e

(μM)

etoposide 120 ± 10 20 no yes 2.4 ± 0.9 10.5 ± 4.0 1.3 ± 0.1 1.0 ± 0.4
merbarone 120 ± 12 no no no 62.3 ± 6.4 83.9 ± 3.0 40.0 ± 2.7 18.9 ± 2.0
1 120 ± 15 200 no yes 18.1 ± 0.8 53.5 ± 1.9 17.5 ± 1.1 26.7 ± 0.1
2 150 ± 19 200 no yes 42.9 ± 6.1 66.1 ± 7.5 37.1 ± 3.7 42.5 ± 7.7
3 30 ± 6 100 no yes 8.5 ± 0.5 14.0 ± 0.9 6.9 ± 0.2 12.5 ± 1.5
4 200 ± 22 no no no 39.1 ± 1.3 94.2 ± 0.7 59.4 ± 6.1 49.6 ± 2.7
5 5 ± 1.0 200 no yes 10.8 ± 0.2 13.6 ± 0.8 9.2 ± 0.3 16.8 ± 0.8

aIC50 values.
bCompound concentration necessary to observe the same amount of topoII/DNA cleavage complex generated by etoposide at 20 μM.

cInteraction with DNA in absence of topoII enzyme. dExtension of the functionalized group of the hybrid compound to the DNA minor groove,
compared to the E-ring of etoposide. eAntiproliferative activity for each cellular line.
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seemed to act differently than merbarone while behaving
similarly to etoposide. In fact, while merbarone is not a
poison,12,26 some compounds in the present work containing
merbarone’s thiobarbituric core showed the ability to stabilize
the topoII/DNA cleavage complex, thus acting as a poison.
This was demonstrated by cleavage assay with 1−3 and 5,
which showed the presence of linear DNA, although to a lesser
extent than etoposide (see Table 1 and Figure S5 in Supporting
Information) as a consequence of cleavable complex stabiliza-
tion. Notably, this evidence sustains our docking calculations at
the etoposide binding site.11,23 In contrast, 4’s poor potency in
blocking topoII was reflected in its inability to generate the
topoII/DNA cleavage complex.
Thus, our experimental findings indicate that 1−3 and 5 act

by poisoning the topoII/DNA cleavage complex, similar to
etoposide. In addition, our docking calculations further support
the hypothesis that our active hybrid topoII poisons may favor
the formation of a stable topoII/DNA cleavage complex.
Indeed, our docking results suggest key interactions between
the N,N′ -diphenyl derivatives and the topoII/DNA complex.
In particular, 1 is predicted to have a binding mode very similar
to that of etoposide (Figure 2), with its 3,5-dimethoxy-4-phenol

ring forming an H-bond with Asp479. Also, one of the two
unsubstituted phenyl rings of 1 was extended toward the
binding site that is occupied by the glycosidic moiety of
etoposide (Figure 2).11 The other phenyl ring overlapped with
the D-ring of etoposide, thus closer to the scissile phosphate of
the T+1 nucleotide along the cleaved DNA strand (Figure 2).
Interestingly, this binding mode of the two naked phenyl rings
was conserved in 4 and 5, too. However, the 3-phenol ring of 4
interacted with the side chain of Arg503, pointing its hydroxyl
group toward the DNA backbone. For this reason, the binding
pose of 4 did not allow an extension of the 3-phenol ring into
the DNA minor groove, as shown for 1−3 and 5. This may
explain 4’s inability to stabilize the topoII/DNA cleavage
complex.
Moreover, the two naked phenyl rings of 3 protruded into

the DNA major groove, in front of the T+1/A+4 and C−1/G+5
base pairs, interacting with the side chains of Met782 and
Met778. In this way, the methoxy group of 3 was between the
side chain of Arg503 and the deoxyribose of the T+1 nucleotide
(Figure 2). Thus, the methoxy group forms key topoII/DNA
interactions in 3, likely explaining its slightly higher ability to
form topoII/DNA cleavage complex (100 μM for 3 vs 200 μM
for all the other new compounds). Notably, the relevance of
this methoxy group is well-known for etoposide, where its
removal leads to a significant loss of activity.11,24,25

Finally, we evaluated the antiproliferative activity of these
compounds in human endometrial (HeLa), breast (MCF7),
lung (A549), and androgen-independent prostate (DU145)
cancer cell lines. Overall, we found a general improvement of
the antiproliferative activity of these new compounds compared
to merbarone, with an increase in potency, up to 6-fold in
HeLa, MCF7, and A549 cell lines. These compounds were also
slightly more potent than merbarone in DU145 cells (Table 1).
Compared to etoposide, they were equipotent (MCF7) or
slightly less active (HeLa, A549, and DU145). Notably, we also
observed an increase in H2AX phosphorylation after treatment
of HeLa cells with 5 (Figure S7),27 which indicates that the
cytotoxicity observed is likely caused by cellular inhibition of
topoII.

■ CONCLUSION

In summary, we present new human topoII poisons obtained
by merging, into a single new hybrid functional scaffold, key
pharmacophoric elements of etoposide and merbarone.
Importantly, we obtained new compounds that are significantly
active in blocking topoII function, including when compared to
the two template structures. These new hybrid molecules show
promising antiproliferative activity against human cancer cells.
Thus, taken together, these results endorse a further
exploration of this first set of new hybrid compounds to better
characterize their mechanism of action and their overall
potential as novel anticancer therapeutics.

■ EXPERIMENTAL SECTION
General Considerations. All the commercial available reagents

and solvents were used as purchased from vendors without further
purification. Dry solvents were purchased from Sigma-Aldrich.
Automated column chromatography purifications were done using a
Teledyne ISCO apparatus (CombiFlash Rf) with prepacked silica gel
columns of different sizes (from 4 g up to 24 g) and mixtures of
increasing polarity of cyclohexane and ethyl acetate (EtOAc) or
dichloromethane (DCM) and methanol (MeOH). NMR experiments
were run on a Bruker Avance III 400 system (400.13 MHz for 1H, and
100.62 MHz for 13C), equipped with a BBI probe and Z-gradients.
Spectra were acquired at 300 K, using deuterated dimethylsulfoxide
(DMSO-d6) or deuterated chloroform (CDCl3) as solvents. For 1H
NMR, data are reported as follows: chemical shift, multiplicity (s =
singlet, d = doublet, dd = double of doublets, t = triplet, q = quartet, m
= multiplet), coupling constants (Hz), and integration. UPLC/MS
analyses were run on a Waters ACQUITY UPLC/MS system
consisting of a SQD (single quadrupole detector) mass spectrometer
equipped with an electrospray ionization interface and a photodiode
array detector. The PDA range was 210−400 nm. Analyses were
performed on an ACQUITY UPLC BEH C18 column (100 mm × 2.1
mm i.d., particle size 1.7 μm) with a VanGuard BEH C18 precolumn
(5 mm × 2.1 mm i.d., particle size 1.7 μm). Mobile phase was 10 mM
NH4OAc in H2O at pH 5 adjusted with CH3COOH (A) and 10 mM
NH4OAc in CH3CN−H2O (95:5) at pH 5.0. The mobile-phase B
proportion increased from 10% to 90% in 6.5 min with a 0.5 mL/min
flow rate. Electrospray ionization in positive and negative mode was
applied. All tested compounds showed ≥95% purity by NMR and
UPLC/MS analysis.

4-Hydroxy-N-(4-hydroxy-3,5-dimethoxyphenyl)-6-oxo-1,3-
diphenyl-2-thioxopyrimidine-5-carboxamide (1). The title com-
pound was synthesized following general procedure B (see Supporting
Information) using compound II (200 mg, 0.51 mmol) and 4-amino-
2,6-dimethoxyphenol (63.8 mg, 0.51 mmol), obtaining 15.7 mg of
pure compound (yield 16%). Synthesis of the intermediates II and 4-
amino-2,6-dimethoxyphenol are in the Supporting Information. tR =
1.96 min. MS (SI) m/z: 492.1 [M − H]+, [M − H]+; calculated, 492.1.
1H NMR (400 MHz, CDCl3): 11.82 (s, 1H), 7.58−7.47 (m, 6H), 7.31

Figure 2. Docking of 1 and 3 (yellow) in the topoII (gray)/DNA
(cyan) cleavage complex and their superposition to the crystal pose of
etoposide (PDB code 3QX3)11 (all N,N′ -diphenyl derivatives in
Supporting Information).
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(dd, J = 7.4, 3.1 Hz, 4H), 6.76 (s, 2H), 5.47 (s, 1H), 3.86 (s, 6H). 13C
NMR (101 MHz, CDCl3) δ 178.59 (CONH), 168.63 (CS), 162.39
(C), 147.22 (C), 139.26 (C), 138.16 (C), 137.04 (C), 133.42 (C),
129.87 (CH), 129.76 (CH), 129.36 (CH), 129.15 (CH), 128.77
(CH), 128.63 (CH), 127.34 (CH), 99.60 (CH), 56.59 (OCH3).
qNMR: 95.3%.
4-Hydroxy-N-(4-hydroxyphenyl)-6-oxo-1,3-diphenyl-2-

thioxopyrimidine-5-carboxamide (2). The title compound was
synthesized following general procedure B (see Supporting Informa-
tion) using II (100 mg, 0.27 mmol) and 4-aminophenol (30.0 mg, 0.27
mmol), obtaining 25.1 mg of pure compound (yield 22%). tR = 2.10
min. MS (SI) m/z: 432.1 [M − H]−; [M − H]− calculated, 432,1. 1H
NMR (400 MHz, DMSO-d6) δ 11.49 (s, 1H), 9.64 (s, 1H), 7.48 (t, J =
7.5 Hz, 4H), 7.40 (t, J = 7.3 Hz, 2H), 7.34−7.32 (m, J = 8.2, 3.2 Hz,
6H), 6.78 (d, J = 8.8 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ
178.40 (CS), 168.12 (CONH), 155.76 (C), 139.19 (C), 129.16 (CH),
128.98 (CH), 128.39 (CH), 124.02 (CH), 115.69 (CH), 83.59 (C).
qNMR: 95.0%.
4-Hydroxy-N-(3-methoxyphenyl)-6-oxo-1,3-diphenyl-2-

thioxopyrimidine-5-carboxamide (3). The title compound was
synthesized following general procedure B (see Supporting Informa-
tion) using II (100 mg, 0.27 mmol) and m-anisidine (0.031 mL, 0.27
mmol), obtaining 66.1 mg of pure compound (yield 55%). tR = 2.10
min. MS (SI) m/z: 446.1 [M − H]+; [M − H]+ calculated, 446,1. 1H
NMR (400 MHz, CDCl3) δ 11.85 (s, 1H), 7.62−7.52 (m, 4H), 7.52−
7.45 (m, 2H), 7.40−7.28 (m, 4H), 7.27 (d, J = 4.4 Hz, 2H), 7.13−7.01
(m, 2H), 6.78 (dd, J = 8.2, 2.4 Hz, 1H), 3.79 (s, 3H). 13C NMR (101
MHz, CDCl3) δ 169.33 (CONH), 167.83 (C), 160.36 (C), 139.22
(C), 136.31 (C), 130.26 (CH), 129.87 (CH), 129.77 (CH), 129.38
(CH), 129.14 (CH), 128.75 (CH), 128.63 (CH), 114.25 (CH),
112.31 (CH), 107.77 (CH), 83.65 (C), 55.57 (OCH3). qNMR: 96.1%.
4-Hydroxy-N-(3-hydroxyphenyl)-6-oxo-1,3-diphenyl-2-

thioxopyrimidine-5-carboxamide (4). The title compound was
synthesized following general procedure B (see Supporting Informa-
tion) using II (100 mg, 0.27 mmol) and 3-aminophenol (30 mg, 0.27
mmol), obtaining 29.6 mg of pure compound (yield 26%). tR = 1.84
min. MS (SI) m/z: 432.3 [M − H]−; [M − H]− calculated, 432.1. 1H
NMR (400 MHz, CDCl3) δ 11.84 (s, 1H), 7.68−7.43 (m, 6H), 7.33
(t, J = 6.9 Hz, 4H), 7.24 (t, J = 8.1 Hz, 1H), 7.13 (s, 1H), 6.98 (d, J =
8.0 Hz, 1H), 6.76−6.68 (m, 1H), 5.08 (s, 1H). 13C NMR (101 MHz,
CDCl3) δ 178.29 (CS), 169.02 (CONH), 167.55 (C), 161.96 (C),
156.07 (C), 138.87 (C), 137.76 (C), 136.13 (C), 130.15 (CH), 129.56
(CH), 129.47 (CH), 129.09 (CH), 128.84 (CH), 128.43 (CH),
128.31 (CH), 113.96 (CH), 113.24 (CH), 108.90 (CH), 83.38 (C).
qNMR: 95.1%.
4-Hydroxy-6-oxo-N,1,3-triphenyl-2-thioxopyrimidine-5-car-

boxamide (5). The title compound was synthesized following general
procedure B (see Supporting Information) using II (100 mg, 0.27
mmol) and aniline (25 μL, 0.37 mmol), obtaining 118.4 mg of pure
compound (yield 86%). tR = 2.19 min. MS (SI) m/z: 414.1 [M − H]−;
[M − H]− calculated, 414.1. 1H NMR (400 MHz, DMSO-d6) δ 11.65
(s, 1H), 7.57−7.51 (m, 2H), 7.50−7.46 (m, J = 7.6 Hz, 3H), 7.43−
7.37 (m, J = 7.3 Hz, 4H), 7.36−7.31 (m, J = 7.8 Hz, 4H), 7.24 (t, J =
7.4 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 178.67 (CONH),
169.32 (CS), 167.82 (COH), 162.32 (CO), 139.22 (C), 138.14 (C),
135.21 (C), 129.88 (CH), 129.79 (CH), 129.51 (CH), 129.39 (CH),
129.15 (CH), 128.75 (CH), 128.63 (CH), 126.58 (CH), 122.08
(CH), 83.61 (C). qNMR: 95.3%.
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