18,516 research outputs found

    Data-Mining a Large Digital Sky Survey: From the Challenges to the Scientific Results

    Get PDF
    The analysis and an efficient scientific exploration of the Digital Palomar Observatory Sky Survey (DPOSS) represents a major technical challenge. The input data set consists of 3 Terabytes of pixel information, and contains a few billion sources. We describe some of the specific scientific problems posed by the data, including searches for distant quasars and clusters of galaxies, and the data-mining techniques we are exploring in addressing them. Machine-assisted discovery methods may become essential for the analysis of such multi-Terabyte data sets. New and future approaches involve unsupervised classification and clustering analysis in the Giga-object data space, including various Bayesian techniques. In addition to the searches for known types of objects in this data base, these techniques may also offer the possibility of discovering previously unknown, rare types of astronomical objects.Comment: Invited paper, to appear in Applications of Digital Image Processing XX, ed. A. Tescher, Proc. S.P.I.E. vol. 3164, in press; 10 pages, a self-contained TeX file, and 3 separate postscript figure

    Open Transactions on Shared Memory

    Full text link
    Transactional memory has arisen as a good way for solving many of the issues of lock-based programming. However, most implementations admit isolated transactions only, which are not adequate when we have to coordinate communicating processes. To this end, in this paper we present OCTM, an Haskell-like language with open transactions over shared transactional memory: processes can join transactions at runtime just by accessing to shared variables. Thus a transaction can co-operate with the environment through shared variables, but if it is rolled-back, also all its effects on the environment are retracted. For proving the expressive power of TCCS we give an implementation of TCCS, a CCS-like calculus with open transactions

    Hamilton's principle: why is the integrated difference of kinetic and potential energy minimized?

    Full text link
    I present an intuitive answer to an often asked question: why is the integrated difference K-U between the kinetic and potential energy the quantity to be minimized in Hamilton's principle? Using elementary arguments, I map the problem of finding the path of a moving particle connecting two points to that of finding the minimum potential energy of a static string. The mapping implies that the configuration of a non--stretchable string of variable tension corresponds to the spatial path dictated by the Principle of Least Action; that of a stretchable string in space-time is the one dictated by Hamilton's principle. This correspondence provides the answer to the question above: while a downward force curves the trajectory of a particle in the (x,t) plane downward, an upward force of the same magnitude stretches the string to the same configuration x(t).Comment: 7 pages, 4 figures. Submitted to the American Journal of Physic

    On the link between rotation, chromospheric activity and Li abundance in subgiant stars

    Full text link
    The connection rotation-CaII emission flux-lithium abundance is analyzed for a sample of bona fide subgiant stars, with evolutionary status determined from HIPPARCOS trigonometric parallax measurements and from the Toulouse-Geneva code.Comment: 9 pages, 8 figure

    Numerical Algebraic Geometry: A New Perspective on String and Gauge Theories

    Get PDF
    The interplay rich between algebraic geometry and string and gauge theories has recently been immensely aided by advances in computational algebra. However, these symbolic (Gr\"{o}bner) methods are severely limited by algorithmic issues such as exponential space complexity and being highly sequential. In this paper, we introduce a novel paradigm of numerical algebraic geometry which in a plethora of situations overcomes these short-comings. Its so-called 'embarrassing parallelizability' allows us to solve many problems and extract physical information which elude the symbolic methods. We describe the method and then use it to solve various problems arising from physics which could not be otherwise solved.Comment: 36 page

    Standard survey methods for estimating colony losses and explanatory risk factors in Apis mellifera

    Get PDF
    This chapter addresses survey methodology and questionnaire design for the collection of data pertaining to estimation of honey bee colony loss rates and identification of risk factors for colony loss. Sources of error in surveys are described. Advantages and disadvantages of different random and non-random sampling strategies and different modes of data collection are presented to enable the researcher to make an informed choice. We discuss survey and questionnaire methodology in some detail, for the purpose of raising awareness of issues to be considered during the survey design stage in order to minimise error and bias in the results. Aspects of survey design are illustrated using surveys in Scotland. Part of a standardized questionnaire is given as a further example, developed by the COLOSS working group for Monitoring and Diagnosis. Approaches to data analysis are described, focussing on estimation of loss rates. Dutch monitoring data from 2012 were used for an example of a statistical analysis with the public domain R software. We demonstrate the estimation of the overall proportion of losses and corresponding confidence interval using a quasi-binomial model to account for extra-binomial variation. We also illustrate generalized linear model fitting when incorporating a single risk factor, and derivation of relevant confidence intervals

    Principle of Maximum Entropy Applied to Rayleigh-B\'enard Convection

    Full text link
    A statistical-mechanical investigation is performed on Rayleigh-B\'enard convection of a dilute classical gas starting from the Boltzmann equation. We first present a microscopic derivation of basic hydrodynamic equations and an expression of entropy appropriate for the convection. This includes an alternative justification for the Oberbeck-Boussinesq approximation. We then calculate entropy change through the convective transition choosing mechanical quantities as independent variables. Above the critical Rayleigh number, the system is found to evolve from the heat-conducting uniform state towards the convective roll state with monotonic increase of entropy on the average. Thus, the principle of maximum entropy proposed for nonequilibrium steady states in a preceding paper is indeed obeyed in this prototype example. The principle also provides a natural explanation for the enhancement of the Nusselt number in convection.Comment: 13 pages, 4 figures; typos corrected; Eq. (66a) corrected to remove a double counting for k=0k_{\perp}=0; Figs. 1-4 replace

    Effective Magnetic Hamiltonian and Ginzburg Criterion for Fluids

    Full text link
    We develop further the approach of Hubbard and Schofield (Phys.Lett., A40 (1972) 245), which maps the fluid Hamiltonian onto a magnetic one. We show that all coefficients of the resulting effective Landau-Ginzburg-Wilson (LGW) Hamiltonian may be expressed in terms of the compressibility of a reference fluid containing only repulsive interactions, and its density derivatives; we calculate the first few coefficients in the case of the hard-core reference fluid. From this LGW-Hamiltonian we deduce approximate mean-field relations between critical parameters and test them on data for Lennard-Jones, square-well and hard-core-Yukawa fluids. We estimate the Ginzburg criterion for these fluids.Comment: 4 pages, LaTeX, To appear in Phys.Rev.

    Depth-Resolved Composition and Electronic Structure of Buried Layers and Interfaces in a LaNiO3_3/SrTiO3_3 Superlattice from Soft- and Hard- X-ray Standing-Wave Angle-Resolved Photoemission

    Full text link
    LaNiO3_3 (LNO) is an intriguing member of the rare-earth nickelates in exhibiting a metal-insulator transition for a critical film thickness of about 4 unit cells [Son et al., Appl. Phys. Lett. 96, 062114 (2010)]; however, such thin films also show a transition to a metallic state in superlattices with SrTiO3_3 (STO) [Son et al., Appl. Phys. Lett. 97, 202109 (2010)]. In order to better understand this transition, we have studied a strained LNO/STO superlattice with 10 repeats of [4 unit-cell LNO/3 unit-cell STO] grown on an (LaAlO3_3)0.3_{0.3}(Sr2_2AlTaO6_6)0.7_{0.7} substrate using soft x-ray standing-wave-excited angle-resolved photoemission (SWARPES), together with soft- and hard- x-ray photoemission measurements of core levels and densities-of-states valence spectra. The experimental results are compared with state-of-the-art density functional theory (DFT) calculations of band structures and densities of states. Using core-level rocking curves and x-ray optical modeling to assess the position of the standing wave, SWARPES measurements are carried out for various incidence angles and used to determine interface-specific changes in momentum-resolved electronic structure. We further show that the momentum-resolved behavior of the Ni 3d eg and t2g states near the Fermi level, as well as those at the bottom of the valence bands, is very similar to recently published SWARPES results for a related La0.7_{0.7}Sr0.3_{0.3}MnO3_3/SrTiO3_3 superlattice that was studied using the same technique (Gray et al., Europhysics Letters 104, 17004 (2013)), which further validates this experimental approach and our conclusions. Our conclusions are also supported in several ways by comparison to DFT calculations for the parent materials and the superlattice, including layer-resolved density-of-states results
    corecore