77 research outputs found

    Climate feedback efficiency and synergy

    Get PDF
    The Author(s) 2013. This article is published with open access at Springerlink.com Abstract Earth’s climate sensitivity to radiative forcing induced by a doubling of the atmospheric CO2 is deter-mined by feedback mechanisms, including changes in atmospheric water vapor, clouds and surface albedo, that act to either amplify or dampen the response. The climate system is frequently interpreted in terms of a simple energy balance model, in which it is assumed that individual feedback mechanisms are additive and act independently. Here we test these assumptions by systematically control-ling, or locking, the radiative feedbacks in a state-of-the-art climate model. The method is shown to yield a near-perfect decomposition of change into partial temperature contri-butions pertaining to forcing and each of the feedbacks. In the studied model water vapor feedback stands for about half the temperature change, CO2-forcing about one third, while cloud and surface albedo feedback contributions are relatively small. We find a close correspondence between forcing, feedback and partial surface temperature response for the water vapor and surface albedo feedbacks, while the cloud feedback is inefficient in inducing surface tempera-ture change. Analysis suggests that cloud-induced warming in the upper tropical troposphere, consistent with rising convective cloud anvils in a warming climate enhances the negative lapse-rate feedback, thereby offsetting some of the warming that would otherwise be attributable to this positive cloud feedback. By subsequently combining feedback mechanisms we find a positive synergy acting between the water vapor feedback and the cloud feedback; that is, the combined cloud and water vapor feedback is greater than the sum of its parts. Negative synergies sur-round the surface albedo feedback, as associated cloud and water vapor changes dampen the anticipated climate change induced by retreating snow and ice. Our results highlight the importance of treating the coupling between clouds, water vapor and temperature in a deepening troposphere

    Regulation and Decision-Making

    Get PDF
    This report examines the effect that ECA-zone regulation has on the optimal vessel fuel strategies for compliance. The findings of this report are trifold, and this report is coupled with a calculation tool which is released to assist ship-owners in the ECA decision making. The first key insight is the substantial impact of the current and future oil price on the optimal compliance strategies ship-owners choose when complying with the new air emission requirements for vessels. The oil price determines the attractiveness of investing in asset modification for compliance, given the capital investment required. Operating on low-Sulphur fuels remains favourable with a low oil price, as the price spread between high- and low-Sulphur does not outweigh the price of asset investments. Ship-owners who are contemplating future compliance strategies should monitor the developments of the global oil price, and consider how much time their operated vessels navigate the ECA in the future

    Capturing of organic carbon and nitrogen in eelgrass sediments of southern Scandinavia

    Get PDF
    The ability of seagrass meadows to filter nutrients and capture and store CO2 and nutrients in the form of organic carbon (OC) and nitrogen (N) in their sediments may help to mitigate local eutrophication as well as climate change via meadow restoration and protection. This study assesses OC and N sediment stocks (top 50 cm) and sequestration rates within Danish eelgrass meadows. At four locations, eelgrass-vegetated and nearby unvegetated plots were studied in protected and exposed areas. The average OC and N sediment 50 cm stocks were 2.6 ± 0.3 kg OC m − 2 and 0.23 ± 0.01 kg N m − 2, including vegetated and unvegetated plots. In general, OC and N stocks did not differ significantly between eelgrass meadows and unvegetated sediments. Lack of accumulation of excess 210Pb suggested sediment erosion or low rates of sediment accumulation at most sites. OC accumulation rates ranged from 6 to 134 g m − 2 yr − 1 and N from 0.7 to 14 g m − 2 yr − 1. Generalized additive models showed that ≥ 80 % of the variation in sediment OC and N stocks was explained by sediment grain size, organic matter source, and hydrodynamic exposure. Long cores, dated with 210Pb, showed declining OC and N densities toward present time, suggesting long-term declines in eelgrass OC and N pools. Estimates of potential nation-wide OC and N accumulation in eelgrass sediments show that they could annually capture up to 0.7 % ± 0.5 % of CO2 emissions and 6.9 % ± 5.2 % of the total terrestrial N load

    Surgical treatment of patients with infective endocarditis:changes in temporal use, patient characteristics, and mortality—a nationwide study

    Get PDF
    BACKGROUND: Valve surgery guidelines for infective endocarditis (IE) are unchanged over decades and nationwide data about the use of valve surgery do not exist. METHODS: We included patients with first-time IE (1999–2018) using Danish nationwide registries. Proportions of valve surgery were reported for calendar periods (1999–2003, 2004–2008, 2009–2013, 2014–2018). Comparing calendar periods in multivariable analyses, we computed likelihoods of valve surgery with logistic regression and rates of 30 day postoperative mortality with Cox regression. RESULTS: We included 8804 patients with first-time IE; 1981 (22.5%) underwent surgery during admission, decreasing by calendar periods (N = 360 [24.4%], N = 483 [24.0%], N = 553 [23.5%], N = 585 [19.7%], P = < 0.001 for trend). For patients undergoing valve surgery, median age increased from 59.7 to 66.9 years (P ≤ 0.001) and the proportion of males increased from 67.8% to 72.6% (P = 0.008) from 1999–2003 to 2014–2018. Compared with 1999–2003, associated likelihoods of valve surgery were: Odds ratio (OR) = 1.14 (95% CI: 0.96–1.35), OR = 1.20 (95% CI: 1.02–1.42), and OR = 1.10 (95% CI: 0.93–1.29) in 2004–2008, 2009–2013, and 2014–2018, respectively. 30 day postoperative mortalities were: 12.7%, 12.8%, 6.9%, and 9.7% by calendar periods. Compared with 1999–2003, associated mortality rates were: Hazard ratio (HR) = 0.96 (95% CI: 0.65–1.41), HR = 0.43 (95% CI: 0.28–0.67), and HR = 0.55 (95% CI 0.37–0.83) in 2004–2008, 2009–2013, and 2014–2018, respectively. CONCLUSIONS: On a nationwide scale, 22.5% of patients with IE underwent valve surgery. Patient characteristics changed considerably and use of valve surgery decreased over time. The adjusted likelihood of valve surgery was similar between calendar periods with a trend towards an increase while rates of 30 day postoperative mortality decreased. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12872-022-02761-z

    Stratosphere‐troposphere coupling and annular mode variability in chemistry‐climate models

    Get PDF
    The internal variability and coupling between the stratosphere and troposphere in CCMVal‐2 chemistry‐climate models are evaluated through analysis of the annular mode patterns of variability. Computation of the annular modes in long data sets with secular trends requires refinement of the standard definition of the annular mode, and a more robust procedure that allows for slowly varying trends is established and verified. The spatial and temporal structure of the models’ annular modes is then compared with that of reanalyses. As a whole, the models capture the key features of observed intraseasonal variability, including the sharp vertical gradients in structure between stratosphere and troposphere, the asymmetries in the seasonal cycle between the Northern and Southern hemispheres, and the coupling between the polar stratospheric vortices and tropospheric midlatitude jets. It is also found that the annular mode variability changes little in time throughout simulations of the 21st century. There are, however, both common biases and significant differences in performance in the models. In the troposphere, the annular mode in models is generally too persistent, particularly in the Southern Hemisphere summer, a bias similar to that found in CMIP3 coupled climate models. In the stratosphere, the periods of peak variance and coupling with the troposphere are delayed by about a month in both hemispheres. The relationship between increased variability of the stratosphere and increased persistence in the troposphere suggests that some tropospheric biases may be related to stratospheric biases and that a well‐simulated stratosphere can improve simulation of tropospheric intraseasonal variability

    Risk governance in organizations

    Get PDF
    Dieses Buch dokumentiert 10 Jahre Risk-Governance-Forschung an der Universität Siegen. In 50 Beiträgen reflektieren Forscher und Praktiker Risk Governance vor dem Hintergrund ihrer eigenen Forschungen und/oder Erfahrungen und geben jeweils einen Entwicklungsimpuls für die Zukunft der Risk Governance. Das Buch zeigt die große Bandbreite und Tiefe des Forschungsgebietes auf und diskutiert Grundannahmen, Implementierungsfragen, die Rolle der Risk Governance als Transformationsmotor, ihre Wirkung in den verschiedenen betrieblichen Funktionen, Entwicklungsperspektiven und den Beitrag der Risk Governance zu einer nachhaltigen Ausrichtung von Unternehmen.This book documents 10 years of risk governance research at the University of Siegen. In 50 contributions, researchers and practitioners reflect on risk governance against the background of their own research and/or experience and provide a development impetus for the future of risk governance. The book shows the wide range and depth of the research field and discusses basic assumptions, implementation issues, the role of risk governance as transformation engine, its impact in the various operational functions, development perspectives, and the contribution of risk governance to a sustainable orientation of companies

    On the Role of the Atmospheric Energy Transport in 2xCO2-Induced Polar Amplification in CESM1

    Get PDF
    A doubling of the atmospheric CO2 content leads to global warming that is amplified in the polar regions. The CO2 forcing also leads to a change of the atmospheric energy transport. This transport change affects the local warming induced by the CO2 forcing. Using the Community Earth System Model (CESM), the direct response to the transport change is investigated. Divergences of the transport change associated with a CO2 doubling are implemented as a forcing in the 1 × CO2 preindustrial control climate. This forcing is zero in the global mean. In response to a CO2 increase in CESM, the northward atmospheric energy transport decreases at the Arctic boundary. However, the transport change still leads to a warming of the Arctic. This is due to a shift between dry static and latent transport components, so that although the dry static transport decreases, the latent transport increases at the Arctic boundary, which is consistent with other model studies. Because of a greenhouse effect associated with the latent transport, the cooling caused by a change of the dry static component is more than compensated for by the warming induced by the change of the latent transport. Similar results are found for the Antarctic region, but the transport change is larger in the Southern Hemisphere than in its northern counterpart. As a consequence, the Antarctic region warms to the extent that this warming leads to global warming that is likely enhanced by the surface albedo feedback associated with considerable ice retreat in the Southern Hemisphere
    corecore