329 research outputs found
Large-scale genomics unveils the genetic architecture of psychiatric disorders
Family study results are consistent with genetic effects making substantial contributions to risk of psychiatric disorders such as schizophrenia, yet robust identification of specific genetic variants that explain variation in population risk had been disappointing until the advent of technologies that assay the entire genome in large samples. We highlight recent progress that has led to a better understanding of the number of risk variants in the population and the interaction of allele frequency and effect size. The emerging genetic architecture implies a large number of contributing loci (that is, a high genome-wide mutational target) and suggests that genetic risk of psychiatric disorders involves the combined effects of many common variants of small effect, as well as rare and de novo variants of large effect. The capture of a substantial proportion of genetic risk facilitates new study designs to investigate the combined effects of genes and the environment
Heterogeneity of genetic architecture of body size traits in a free-living population
Knowledge of the underlying genetic architecture of quantitative traits could aid in understanding how they evolve. In wild populations, it is still largely unknown whether complex traits are polygenic or influenced by few loci with major effect, due to often small sample sizes and low resolution of marker panels. Here, we examine the genetic architecture of five adult body size traits in a free-living population of Soay sheep on St Kilda using 37 037 polymorphic SNPs. Two traits (jaw and weight) show classical signs of a polygenic trait: the proportion of variance explained by a chromosome was proportional to its length, multiple chromosomes and genomic regions explained significant amounts of phenotypic variance, but no SNPs were associated with trait variance when using GWAS. In comparison, genetic variance for leg length traits (foreleg, hindleg and metacarpal) was disproportionately explained by two SNPs on chromosomes 16 (s23172.1) and 19 (s74894.1), which each explained >10% of the additive genetic variance. After controlling for environmental differences, females heterozygous for s74894.1 produced more lambs and recruits during their lifetime than females homozygous for the common allele conferring long legs. We also demonstrate that alleles conferring shorter legs have likely entered the population through a historic admixture event with the Dunface sheep. In summary, we show that different proxies for body size can have very different genetic architecture and that dense SNP helps in understanding both the mode of selection and the evolutionary history at loci underlying quantitative traits in natural populations
Examining the Impact of Imputation Errors on Fine-Mapping Using DNA Methylation QTL as a Model Trait
Genetic variants disrupting DNA methylation at CpG dinucleotides (CpG-SNP) provide a set of known causal variants to serve as models for testing fine-mapping methodology. We use 1716 CpG-SNPs to test three fine-mapping approaches (BIMBAM, BSLMM, and the J-test), assessing the impact of imputation errors and the choice of reference panel by using both whole-genome sequence (WGS), and genotype array data on the same individuals (n=1166). The choice of imputation reference panel had a strong effect on imputation accuracy, with the 1000 Genomes Phase 3 (1000G) reference panel (n=2504 from 26 populations) giving a mean non-reference discordance rate between imputed and sequenced genotypes of 3.2% compared to 1.6% when using the Haplotype Reference Consortium (HRC) reference panel (n=32470 Europeans). These imputation errors impacted on whether the CpG-SNP was included in the 95% credible set, with a difference of ∼ 23% and ∼ 7% between the WGS and the 1000G and HRC imputed datasets respectively. All of the fine-mapping methods failed to reach the expected 95% coverage of the CpG-SNP. This is attributed to secondary cis genetic effects that are unable to be statistically separated from the CpG-SNP, and through a masking mechanism where the effect of the methylation disrupting allele at the CpG-SNP is hidden by the effect of a nearby SNP that has strong LD with the CpG-SNP. The reduced accuracy in fine-mapping a known causal variant in a low level biological trait with imputed genetic data has implications for the study of higher order complex traits and disease
Analysis of common genetic variation and rare CNVs in the Australian Autism Biobank.
BackgroundAutism spectrum disorder (ASD) is a complex neurodevelopmental condition whose biological basis is yet to be elucidated. The Australian Autism Biobank (AAB) is an initiative of the Cooperative Research Centre for Living with Autism (Autism CRC) to establish an Australian resource of biospecimens, phenotypes and genomic data for research on autism.MethodsGenome-wide single-nucleotide polymorphism genotypes were available for 2,477 individuals (after quality control) from 546 families (436 complete), including 886 participants aged 2 to 17 years with diagnosed (n = 871) or suspected (n = 15) ASD, 218 siblings without ASD, 1,256 parents, and 117 unrelated children without an ASD diagnosis. The genetic data were used to confirm familial relationships and assign ancestry, which was majority European (n = 1,964 European individuals). We generated polygenic scores (PGS) for ASD, IQ, chronotype and height in the subset of Europeans, and in 3,490 unrelated ancestry-matched participants from the UK Biobank. We tested for group differences for each PGS, and performed prediction analyses for related phenotypes in the AAB. We called copy-number variants (CNVs) in all participants, and intersected these with high-confidence ASD- and intellectual disability (ID)-associated CNVs and genes from the public domain.ResultsThe ASD (p = 6.1e-13), sibling (p = 4.9e-3) and unrelated (p = 3.0e-3) groups had significantly higher ASD PGS than UK Biobank controls, whereas this was not the case for height-a control trait. The IQ PGS was a significant predictor of measured IQ in undiagnosed children (r = 0.24, p = 2.1e-3) and parents (r = 0.17, p = 8.0e-7; 4.0% of variance), but not the ASD group. Chronotype PGS predicted sleep disturbances within the ASD group (r = 0.13, p = 1.9e-3; 1.3% of variance). In the CNV analysis, we identified 13 individuals with CNVs overlapping ASD/ID-associated CNVs, and 12 with CNVs overlapping ASD/ID/developmental delay-associated genes identified on the basis of de novo variants.LimitationsThis dataset is modest in size, and the publicly-available genome-wide-association-study (GWAS) summary statistics used to calculate PGS for ASD and other traits are relatively underpowered.ConclusionsWe report on common genetic variation and rare CNVs within the AAB. Prediction analyses using currently available GWAS summary statistics are largely consistent with expected relationships based on published studies. As the size of publicly-available GWAS summary statistics grows, the phenotypic depth of the AAB dataset will provide many opportunities for analyses of autism profiles and co-occurring conditions, including when integrated with other omics datasets generated from AAB biospecimens (blood, urine, stool, hair)
Safety and Immunogenicity of Neonatal Pneumococcal Conjugate Vaccination in Papua New Guinean Children: A Randomised Controlled Trial
Background: Approximately 826,000 children, mostly young infants, die annually from invasive pneumococcal disease. A 6-10-14-week schedule of pneumococcal conjugate vaccine (PCV) is efficacious but neonatal PCV may provide earlier protection and better coverage. We conducted an open randomized controlled trial in Papua New Guinea to compare safety, immunogenicity and priming for memory of 7-valent PCV (PCV7) given in a 0-1-2-month (neonatal) schedule with that of the routine 1-2-3-month (infant) schedule. Methods: We randomized 318 infants at birth to receive PCV7 in the neonatal or infant schedule or no PCV7. All infants received 23-valent pneumococcal polysaccharide vaccine (PPV) at age 9 months. Serotype-specific serum IgG for PCV7 (VT) serotypes and non-VT serotypes 2, 5 and 7F were measured at birth and 2, 3, 4, 9, 10 and 18 months of age. Primary outcomes were geometric mean concentrations (GMCs) and proportions with concentration ≥0.35 µg/ml of VT serotype-specific pneumococcal IgG at age 2 months and one month post-PPV.Results: We enrolled 101, 105 and 106 infants, respectively, into neonatal, infant and control groups. Despite high background levels of maternally derived antibody, both PCV7 groups had higher GMCs than controls at age 2 months for serotypes 4 (p<0.001) and 9V (p<0.05) and at age 3 months for all VTs except 6B. GMCs for serotypes 4, 9V, 18C and 19F were significantly higher (p<0.001) at age 2 months in the neonatal (one month post-dose2 PCV7) than in the infant group (one month post-dose1 PCV7). PPV induced significantly higher VT antibody responses in PCV7-primed than unprimed infants, with neonatal and infant groups equivalent. High VT and non-VT antibody concentrations generally persisted to age 18 months. Conclusions: PCV7 is well-tolerated and immunogenic in PNG neonates and young infants and induces immunologic memory to PPV booster at age 9 months with antibody levels maintained to age 18 months
S. pneumoniae transmission according to inclusion in conjugate vaccines: Bayesian analysis of a longitudinal follow-up in schools
BACKGROUND: Recent trends of pneumococcal colonization in the United States, following the introduction of conjugate vaccination, indicate that non-vaccine serotypes tend to replace vaccine serotypes. The eventual extent of this replacement is however unknown and depends on serotype-specific carriage and transmission characteristics. METHODS: Here, some of these characteristics were estimated for vaccine and non-vaccine serotypes from the follow-up of 4,488 schoolchildren in France in 2000. A Bayesian approach using Markov chain Monte Carlo data augmentation techniques was used for estimation. RESULTS: Vaccine and non-vaccine serotypes were found to have similar characteristics: the mean duration of carriage was 23 days (95% credible interval (CI): 21, 25 days) for vaccine serotypes and 22 days (95% CI: 20, 24 days) for non-vaccine serotypes; within a school of size 100, the Secondary Attack Rate was 1.1% (95% CI: 1.0%, 1.2%) for both vaccine and non-vaccine serotypes. CONCLUSION: This study supports that, in 3–6 years old children, no competitive advantage exists for vaccine serotypes compared to non-vaccine serotypes. This is an argument in favour of important serotype replacement. It would be important to validate the result for infants, who are known to be the main reservoir in maintaining transmission. Overall reduction in pathogenicity should also be taken into account in forecasting the future burden of pneumococcal colonization in vaccinated populations
The dynamics of nasopharyngeal streptococcus pneumoniae carriage among rural Gambian mother-infant pairs
<p>Abstract</p> <p>Background</p> <p><it>Streptococcus pneumoniae </it>is an important cause of community acquired pneumonia, sepsis, meningitis and otitis media globally and has been incriminated as a major cause of serious childhood bacterial infections in The Gambia. Better understanding of the dynamics of transmission and carriage will inform control strategies.</p> <p>Methods</p> <p>This study was conducted among 196 mother-infant pairs recruited at birth from six villages in the West Kiang region of The Gambia. Nasopharyngeal swabs were collected from mother-infant pairs at birth (within 12 hours of delivery), 2, 5 and 12 months. Standard techniques of culture were used to identify carriage and serotype <it>S. pneumoniae</it>.</p> <p>Results</p> <p>Of 46 serotypes identified, the 6 most common, 6A, 6B, 14, 15, 19F and 23F, accounted for 67.3% of the isolates from infants. Carriage of any serotype among infants rose from 1.5% at birth to plateau at approximately 80% by 2 m (prevalence at 2 m = 77%; 5 m = 86%; 12 m = 78%). Likewise, maternal carriage almost doubled in the first 2 months post-partum and remained elevated for the next 10 m (prevalence at birth = 13%; 2 m = 24%; 5 m = 22%; 12 m = 21%). Carriage was significantly seasonal in both infants and mothers with a peak in December and lowest transmission in August. The total number of different serotypes we isolated from each infant varied and less than would be expected had the serotypes assorted independently. In contrast, this variability was much as expected among mothers. The half-life of a serotype colony was estimated to be 1.90 m (CI<sub>95%</sub>: 1.66-2.21) in infants and 0.75 m (CI<sub>95%</sub>: 0.55-1.19) in mothers. While the odds for a serotype to be isolated from an infant increased by 9-fold if it had also been isolated from the mother, the population attributable fraction (PAF) of pneumococcal carriage in infants due to maternal carriage was only 9.5%. Some marked differences in dynamics were observed between vaccine and non-vaccine serotypes.</p> <p>Conclusions</p> <p>Colonisation of the nasopharynx in Gambian infants by <it>S. pneumoniae </it>is rapid and highly dynamic. Immunity or inter-serotype competition may play a role in the dynamics. Reducing mother-infant transmission would have a minimal effect on infant carriage.</p
Impact of Capsular Switch on Invasive Pneumococcal Disease Incidence in a Vaccinated Population
BACKGROUND: Despite the dramatic decline in the incidence of invasive pneumococcal disease (IPD) observed since the introduction of conjugate vaccination, it is feared that several factors may undermine the future effectiveness of the vaccines. In particular, pathogenic pneumococci may switch their capsular types and evade vaccine-conferred immunity. METHODOLOGY/PRINCIPAL FINDINGS: Here, we first review the literature and summarize the available epidemiological data on capsular switch for S. pneumoniae. We estimate the weekly probability that a persistently carried strain may switch its capsule from four studies, totalling 516 children and 6 years of follow-up, at 1.5x10(-3)/week [4.6x10(-5)-4.8x10(-3)/week]. There is not enough power to assess an increase in this frequency in vaccinated individuals. Then, we use a mathematical model of pneumococcal transmission to quantify the impact of capsular switch on the incidence of IPD in a vaccinated population. In this model, we investigate a wide range of values for the frequency of vaccine-selected capsular switch. Predictions show that, with vaccine-independent switching only, IPD incidence in children should be down by 48% 5 years after the introduction of the vaccine with high coverage. Introducing vaccine-selected capsular switch at a frequency up to 0.01/week shows little effect on this decrease; yearly, at most 3 excess cases of IPD per 10(6) children might occur due to switched pneumococcal strains. CONCLUSIONS: Based on all available data and model predictions, the existence of capsular switch by itself should not impact significantly the efficacy of pneumococcal conjugate vaccination on IPD incidence. This optimistic result should be tempered by the fact that the selective pressure induced by the vaccine is currently increasing along with vaccine coverage worldwide; continued surveillance of pneumococcal populations remains of the utmost importance, in particular during clinical trials of the new conjugate vaccines
Dynamics of pneumococcal nasopharyngeal carriage in healthy children attending a day care center in northern Spain. influence of detection techniques on the results
<p>Abstract</p> <p>Background</p> <p>Pneumococcal nasopharyngeal carriage precedes invasive infection and is the source for dissemination of the disease. Differences in sampling methodology, isolation or identification techniques, as well as the period (pre -or post-vaccination) when the study was performed, can influence the reported rates of colonization and the distribution of serotypes carried.</p> <p>Objectives</p> <p>To evaluate the prevalence and dynamics of pneumococcal nasopharyngeal colonization in healthy children aged 6-34 months attending a day care center with a high level of hygiene and no overcrowding. The study was performed 3-4 years after the 7-valent pneumococcal vaccine was introduced, using multiple methodologies to detect and characterize the isolates.</p> <p>Methods</p> <p>Over 12 months, 25 children were sampled three times, 53 children twice and 27 children once. Three <it>Streptococcus pneumoniae </it>typing techniques were used: Quellung, Pneumotest-Latex-kit and multiplex-polymerase chain reaction (PCR). The similarity of isolates of the same serotype was established by pulsed field gel electrophoresis (PFGE) and occasionally the multilocus sequence type (ST) was also determined.</p> <p>Results</p> <p>Overall pneumococcal carriage and multiple colonization rates were 89.5% (94/105) and 39%, respectively. Among 218 pneumococci detected, 21 different serotypes and 13 non-typeable isolates were found. The most prevalent serotypes were 19A, 16F and 15B. Serotypes 15B, 19A and 21 were mainly found as single carriage; in contrast serotypes 6B, 11A and 20, as well as infrequent serotypes, were isolated mainly as part of multiple carriage. Most 19A isolates were ST193 but most serotypes showed high genetic heterogeneity. Changes in the pneumococci colonizing each child were frequent and the same serotype detected on two occasions frequently showed a different genotype. By multiplex-PCR, 100% of pneumococci could be detected and 94% could be serotyped versus 80.3% by the Quellung reaction and Pneumotest-Latex in combination (p < 0.001).</p> <p>Conclusions</p> <p>Rates of <it>S. pneumoniae </it>carriage and multiple colonization were very high. Prevalent serotypes differed from those found in similar studies in the pre-vaccination period. In the same child, clearance of a pneumococcal strain and acquisition of a new one was frequent in a short period of time. The most effective technique for detecting pneumococcal nasopharyngeal carriers was multiplex-PCR.</p
- …