362 research outputs found
Pegfilgrastimâ±âciprofloxacin for primary prophylaxis with TAC (docetaxel/doxorubicin/cyclophosphamide) chemotherapy for breast cancer. Results from the GEPARTRIO study
Background: TAC (docetaxel/doxorubicin/cyclophosphamide) is associated with high incidences of grade 4 neutropenia and febrile neutropenia (FN). This analysis compared the efficacies of four regimens for primary prophylaxis of FN and related toxic effects in breast cancer patients receiving neoadjuvant TAC. Patients and methods: Patients with stage T2-T4 primary breast cancer were scheduled to receive 6-8 cycles of TAC. Primary prophylaxis was: ciprofloxacin 500 mg orally twice daily on days 5-14 (nâ=â253 patients; 1478 cycles), daily granulocyte colony-stimulating factor (G-CSF) (filgrastim 5 ÎŒg/kg/day or lenograstim 150 ÎŒg/m2/day) on days 5-10 (nâ=â377; 2400 cycles), pegfilgrastim 6 mg on day 2 (nâ=â305; 1930 cycles), or pegfilgrastim plus ciprofloxacin (nâ=â321; 1890 cycles). Results: Pegfilgrastim with/without ciprofloxacin was significantly more effective than daily G-CSF or ciprofloxacin in preventing FN (5% and 7% versus 18% and 22% of patients; all Pâ<â0.001), grade 4 neutropenia, and leukopenia. Pegfilgrastim plus ciprofloxacin completely prevented first cycle FN (Pâ<â0.01 versus pegfilgrastim alone) and fatal neutropenic events. Conclusion: Ciprofloxacin alone, or daily G-CSF from day 5-10 (as in common practice), provided suboptimal protection against FN and related toxic effects in patients receiving TAC. Pegfilgrastim was significantly more effective in this setting, especially if given with ciprofloxaci
Iron, silicate, and light co-limitation of three Southern Ocean diatom species
The effect of combined iron, silicate, and light co-limitation was investigated in the three diatom species Actinocyclus sp. Ehrenberg, Chaetoceros dichaeta Ehrenberg, and Chaetoceros debilis Cleve, isolated from the Southern Ocean (SO). Growth of all species was co-limited by iron and silicate, reflected in a significant increase in the number of cell divisions compared to the control. Lowest relative Si uptake and drastic frustule malformation was found under iron and silicate co-limitation in C. dichaeta, while Si limitation in general caused cell elongation in both Chaetoceros species. Higher light intensities similar to SO surface conditions showed a negative impact on growth of C. dichaeta and Actinocyclus sp. and no effect on C. debilis. This is in contrast to the assumed light limitation of SO diatoms due to deep wind driven mixing. Our results suggest that growth and species composition of Southern Ocean diatoms is influenced by a sensitive interaction of the abiotic factors, iron, silicate, and light
Submarine groundwater springs are characterized by distinct fish communities
The inflow of terrestrial groundwater into the ocean is increasingly recognized as an important local source of nutrients and pollutants to coastal ecosystems. Although there is evidence of a link between fresh submarine groundwater discharge (SGD)âderived nutrients and primary producer and primary consumer abundances, the effects of fresh SGD on the productivity of higher trophic levels such as ichthyofaunal communities remain unclear. To further investigate this relationship, we sampled three sites inside a coral reef lagoon in Mauritius: One site entailing six distinct groundwater springs, a site highly influenced by freshwater influx through the springs, and a strictly marine control site. Using remote underwater video surveys, we found that fish abundances were significantly higher at the groundwater springs than at the other two sampling sites.Principal component analyses showed that the springs and the springâinfluenced part of the lagoon were best described by elevated water nutrient loadings, whereas the control site was characterized by higher water salinity and pH. Macroalgae cover was highest at the control site and the springs. Herbivores and invertivores dominated the fish community at the springs, in contrast to generalists at the control site. At the springâinfluenced site, we mainly encountered high coral/turf algae cover and high abundances of associated fish feeding groups (territorial farmers, corallivores). Our results provide evidence of a fresh SGDâdriven relationship between altered hydrography and distinct fish communities with elevated abundances at groundwater springs in a coral reef lagoon. These findings suggest that the management and assessment of secondary consumer productivity in tropical lagoons should take into account the effects of groundwater springs
Dissolved inorganic nutrients and chlorophyll on the narrow continental shelf of Eastern Brazil
The eastern Brazilian continental shelf is narrow and subject to the influence of a western boundary current system, presenting lower biological productivity than other regions. In this study, the distribution of water masses, dissolved inorganic nutrients, chlorophyll-a and total suspended solids (TSS) on the inner shelf (< 35 m depth), between Itacaré and Canavieiras, eastern Brazil, is presented. Sampling surveys were carried out in March and August 2006 and March 2007. Tropical water (TW) prevailed during March 2006 and August 2007 with the lower salinity waters (< 36) found in most samples taken in March 2007, reflecting the influence of continental outflow and rain in coastal waters. Low concentrations of dissolved inorganic nutrients and Chl-a found were typical of TW and results suggested that the inner shelf waters were depleted in dissolved inorganic nitrogen in August 2006 and March 2007, and in phosphate in March 2006, potentially affecting phytoplankton growth. Stratification of the water column was observed due to differences in dissolved nutrient concentrations, chlorophyll-a and TSS when comparing surface and bottom samples, possibly the result of a colder water intrusion and mixing on the bottom shelf and a deep chlorophyll maximum and/or sediment resuspension effect. Despite this stratification, oceanographic processes such as lateral mixing driven by the Brazil Current as well as a northward alongshore drift driven by winds and tides transporting Coastal Water can lead to an enhanced mixing of these waters promoting some heterogeneity in this oligotrophic environment
Metabolically active microbial communities in marine sediment under high-CO2 and low-pH extremes
Sediment-hosting hydrothermal systems in the Okinawa Trough maintain a large amount of liquid, supercritical and hydrate phases of CO2 in the seabed. The emission of CO2 may critically impact the geochemical, geophysical and ecological characteristics of the deep-sea sedimentary environment. So far it remains unclear whether microbial communities that have been detected in such high-CO2 and low-pH habitats are metabolically active, and if so, what the biogeochemical and ecological consequences for the environment are. In this study, RNA-based molecular approaches and radioactive tracer-based respiration rate assays were combined to study the density, diversity and metabolic activity of microbial communities in CO2-seep sediment at the Yonaguni Knoll IV hydrothermal field of the southern Okinawa Trough. In general, the number of microbes decreased sharply with increasing sediment depth and CO2 concentration. Phylogenetic analyses of community structure using reverse-transcribed 16S ribosomal RNA showed that the active microbial community became less diverse with increasing sediment depth and CO2 concentration, indicating that microbial activity and community structure are sensitive to CO2 venting. Analyses of RNA-based pyrosequences and catalyzed reporter deposition-fluorescence in situ hybridization data revealed that members of the SEEP-SRB2 group within the Deltaproteobacteria and anaerobic methanotrophic archaea (ANME-2a and -2c) were confined to the top seafloor, and active archaea were not detected in deeper sediments (13â30âcm in depth) characterized by high CO2. Measurement of the potential sulfate reduction rate at pH conditions of 3â9 with and without methane in the headspace indicated that acidophilic sulfate reduction possibly occurs in the presence of methane, even at very low pH of 3. These results suggest that some members of the anaerobic methanotrophs and sulfate reducers can adapt to the CO2-seep sedimentary environment; however, CO2 and pH in the deep-sea sediment were found to severely impact the activity and structure of the microbial community
Benthic Nitrogen Cycling Traversing the Peruvian Oxygen Minimum Zone
Benthic nitrogen (N) cycling was investigated at six stations along a transect traversing the Peruvian oxygen minimum zone (OMZ) at 11 °S. An extensive dataset including porewater concentration profiles and in situ benthic fluxes of nitrate (NO3â), nitrite (NO2â) and ammonium (NH4+) was used to constrain a 1âD reactionâtransport model designed to simulate and interpret the measured data at each station. Simulated rates of nitrification, denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA) by filamentous large sulfur bacteria (e.g. Beggiatoa and Thioploca) were highly variable throughout the OMZ yet clear trends were discernible. On the shelf and upper slope (80 â 260 m water depth) where extensive areas of bacterial mats were present, DNRA dominated total N turnover (less-than-or-equals, slant 2.9 mmol N mâ2 dâ1) and accounted for greater-or-equal, slanted 65 % of NO3â + NO2â uptake by the sediments from the bottom water. Nonetheless, these sediments did not represent a major sink for dissolved inorganic nitrogen (DIN = NO3â + NO2â + NH4+) since DNRA reduces NO3â and, potentially NO2â, to NH4+. Consequently, the shelf and upper slope sediments were recycling sites for DIN due to relatively low rates of denitrification and high rates of ammonium release from DNRA and ammonification of organic matter. This finding contrasts with the current opinion that sediments underlying OMZs are a strong sink for DIN. Only at greater water depths (300 â 1000 m) did the sediments become a net sink for DIN. Here, denitrification was the major process (less-than-or-equals, slant 2 mmol N mâ2 dâ1) and removed 55 â 73 % of NO3â and NO2â taken up by the sediments, with DNRA and anammox accounting for the remaining fraction. Anammox was of minor importance on the shelf and upper slope yet contributed up to 62 % to total N2 production at the 1000 m station. The results indicate that the partitioning of oxidized N (NO3â, NO2â) into DNRA or denitrification is a key factor determining the role of marine sediments as DIN sinks or recycling sites. Consequently, high measured benthic uptake rates of oxidized N within OMZs do not necessarily indicate a loss of fixed N from the marine environment
- âŠ