581 research outputs found

    Electron irradiation: from test to material tayloring

    Full text link
    In this article, we report some examples of how high-energy electron irradiation can be used as a tool for shaping material properties turning the generation of point-defects into an advantage beyond the presumed degradation of the properties. Such an approach is radically different from what often occurs when irradiation is used as a test for radiation hard materials or devices degradation in harsh environments. We illustrate the potential of this emerging technique by results obtained on two families of materials, namely semiconductors and superconductors

    Cross-Layer Early Reliability Evaluation for the Computing cOntinuum

    Get PDF
    Advanced multifunctional computing systems realized in forthcoming technologies hold the promise of a significant increase of the computational capability that will offer end-users ever improving services and functionalities (e.g., next generation mobile devices, cloud services, etc.). However, the same path that is leading technologies toward these remarkable achievements is also making electronic devices increasingly unreliable, posing a threat to our society that is depending on the ICT in every aspect of human activities. Reliability of electronic systems is therefore a key challenge for the whole ICT technology and must be guaranteed without penalizing or slowing down the characteristics of the final products. CLERECO EU FP7 (GA No. 611404) research project addresses early accurate reliability evaluation and efficient exploitation of reliability at different design phases, since these aspects are two of the most important and challenging tasks toward this goal

    Advances in the Engineering of Near Infrared Emitting Liquid Crystals and Copolymers, Extended Porous Frameworks, Theranostic Tools and Molecular Junctions Using Tailored Re6 Cluster Building Blocks

    No full text
    International audienceAt the occasion of the fiftieth birthday of the introduction of the term 'metal atom cluster' by F. A. Cotton in inorganic chemistry, it is the good time to make a review on the advances in the engineering of molecular assemblies and nanomaterials based on octahedral Re6 metal atom clusters. The latter exhibit unique intrinsic structural and physicochemical properties (orthogonal disposition of metallic sites that can be selectively functionalized, photoluminescence, redox, generation of singlet oxygen) that make them relevant building blocks for the structuration at the nanometric scale and functionalization of hybrid organic-inorganic materials and supramolecular frameworks. After synthesis by solid state chemistry techniques at high temperature, inorganic precursors built up on face-capped [(Re6Yi8)Ya6] cluster units (Y = chalcogen and/or halogen) can be functionalized via solution chemistry techniques or organic melts to form [(Re6Yi8)La6] (L = CN, OH, various organic ligands...). This work reports advances in the synthesis of [(Re6Yi8)Ya6] and [(Re6Yi8)La6] cluster units as well as on their use in the elaboration of supramolecular frameworks, nanoparticles, hybrid nanomaterials (co-polymers and liquid crystals) and active molecular junctions

    Three Possible Origins for the Gas Layer on GJ 1214b

    Full text link
    We present an analysis of the bulk composition of the MEarth transiting super Earth exoplanet GJ 1214b using planet interior structure models. We consider three possible origins for the gas layer on GJ 1214b: direct accretion of gas from the protoplanetary nebula, sublimation of ices, and outgassing from rocky material. Armed only with measurements of the planet mass (M_p=6.55+/-0.98 M_{earth}), radius (R_p=2.678+/-0.13 R_{earth}), and stellar irradiation level, our main conclusion is that we cannot infer a unique composition. A diverse range of planet interiors fits the measured planet properties. Nonetheless, GJ 1214b's relatively low average density (rho_p=1870+/-400 kg m^{-3}) means that it almost certainly has a significant gas component. Our second major conclusion is that under most conditions we consider GJ 1214b would not have liquid water. Even if the outer envelope is predominantly sublimated water ice, the envelope will likely consist of a super-fluid layer sandwiched between vapor above and plasma (electrically conductive fluid) below at greater depths. In our models, a low intrinsic planet luminosity (<~2TW) is needed for a water envelope on GJ 1214b to pass through the liquid phase.Comment: 10 pages, 5 figures, published in Ap

    Pressure-Induced Collapse of the Charge Density Wave and Higgs Mode Visibility in 2H−TaS2

    Get PDF
    The pressure evolution of the Raman active electronic excitations of the transition metal dichalcogenides 2H-TaS2 is followed through the pressure phase diagram embedding incommensurate charge-density-wave and superconducting states. At high pressure, the charge-density wave is found to collapse at 8.5 GPa. In the coexisting charge-density-wave and superconducting orders, we unravel a strong in-gap superconducting mode, attributed to a Higgs mode, coexisting with the expected incoherent Cooper-pair breaking signature. The latter remains in the pure superconducting state reached above 8.5 GPa. Our report constitutes a new observation of such Raman active Higgs mode since the long-standing unique case 2H-NbSe2

    Effects of experimental warming on carbon sink function of a temperate pristine mire : the PEATWARM project.

    Get PDF
    communication oraleInternational audienceWithin the PEATWARM project, we use Sphagnum peatlands as a model to analyse their vulnerability to climate change using an experimental system (ITEX) that simulates in situ an increase in average temperature. We aim to determine the effects of temperature increase on the vegetation, the balance of above- and belowground gas fluxes (CO2 and CH4), the microbial diversity and activity in Sphagnum mosses and in peat, and the dynamics of labile and recalcitrant organic matter of peat. The ultimate objective is the creation of a biogeochemical model of C coupled with N and S cycles that includes interactions between these key compartments

    Antibody response against Trichinella spiralis in experimentally infected rats is dose dependent

    Get PDF
    Domestic pigs are the main representatives of the domestic cycle of Trichinella spiralis that play a role in transmission to humans. In Europe, backyard pigs of small household farms are the most important risks for humans to obtain trichinellosis. Rats might play a role in the transmission of Trichinella spiralis from domestic to sylvatic animals and vice versa. In order to be able to investigate the role of wild rats in the epidemiology of T. spiralis in The Netherlands, we studied the dynamics of antibody response after T. spiralis infections in experimental rats, using infection doses ranging from very low (10 muscle larvae, ML, per rat) to very high (16 000 ML per rat). To evaluate the feasibility of rats surviving high infection doses with T. spiralis, clinical and pathological parameters were quantified. Serological tools for detecting T. spiralis in rats were developed to quantitatively study the correlation between parasite load and immunological response. The results show that an infection dose-dependent antibody response was developed in rats after infection with as low as 10 ML up to a level of 10 000 ML. A positive correlation was found between the number of recovered ML and serum antibody levels, although specific measured antibody levels correspond to a wide range of LPG values. Serum antibodies of rats that were infected even with 10 or 25 ML could readily be detected by use of the T. spiralis western blot 2 weeks post infection. We conclude that based on these low infection doses, serologic tests are a useful tool to survey T. spiralis in wild rats

    Stacking, correlations and electronic dispersion in the photoexcited state of 1T-TaS<sub>2</sub>

    Get PDF
    Here we perform angle and time-resolved photoelectron spectroscopy on the commensurate Charge Density Wave phase of 1T-TaS2. Data with different probe pulse polarization are employed to map the dispersion of electronic states below or above the chemical potential. The experimental results are compared to Density-Functional Theory calculations with a self-consistent evaluation of the coulomb repulsion. Both out-of-plane dimerization and electronic correlations must be included in order to obtain good agreement with the experimental data. Upon Photoexcitation, the fluctuations of CDW order erase the band dispersion near to the chemical potential and halve the charge gap size. This transient phase sets within half a period of the coherent lattice motion and is likely favored by strong electronic correlations
    corecore