396 research outputs found

    The Escherichia coli RutR transcription factor binds at targets within genes as well as intergenic regions.

    Get PDF
    The Escherichia coli RutR protein is the master regulator of genes involved in pyrimidine catabolism. Here we have used chromatin immunoprecipitation in combination with DNA microarrays to measure the binding of RutR across the chromosome of exponentially growing E. coli cells. Twenty RutR-binding targets were identified and analysis of these targets generated a DNA consensus logo for RutR binding. Complementary in vitro binding assays showed high-affinity RutR binding to 16 of the 20 targets, with the four low-affinity RutR targets lacking predicted key binding determinants. Surprisingly, most of the DNA targets for RutR are located within coding segments of the genome and appear to have little or no effect on transcript levels in the conditions tested. This contrasts sharply with other E. coli transcription factors whose binding sites are primarily located in intergenic regions. We suggest that either RutR has yet undiscovered function or that evolution has been slow to eliminate non-functional DNA sites for RutR because they do not have an adverse effect on cell fitness

    Blockade of chemokine-induced signalling inhibits CCR5-dependent HIV infection in vitro without blocking gp120/CCR5 interaction.

    Get PDF
    BACKGROUND: Cellular infection with human immunodeficiency virus (HIV) both in vitro and in vivo requires a member of the chemokine receptor family to act as a co-receptor for viral entry. However, it is presently unclear to what extent the interaction of HIV proteins with chemokine receptors generates intracellular signals that are important for productive infection. RESULTS: In this study we have used a recently described family of chemokine inhibitors, termed BSCIs, which specifically block chemokine-induced chemotaxis without affecting chemokine ligands binding to their receptors. The BSCI termed Peptide 3 strongly inhibited CCR5 mediated HIV infection of THP-1 cells (83 +/- 7% inhibition assayed by immunofluoresence staining), but had no effect on gp120 binding to CCR5. Peptide 3 did not affect CXCR4-dependent infection of Jurkat T cells. CONCLUSION: These observations suggest that, in some cases, intracellular signals generated by the chemokine coreceptor may be required for a productive HIV infection

    DNA Sampling: a method for probing protein binding at specific loci on bacterial chromosomes

    Get PDF
    We describe a protocol, DNA sampling, for the rapid isolation of specific segments of DNA, together with bound proteins, from Escherichia coli K-12. The DNA to be sampled is generated as a discrete fragment within cells by the yeast I-SceI meganuclease, and is purified using FLAG-tagged LacI repressor and beads carrying anti-FLAG antibody. We illustrate the method by investigating the proteins bound to the colicin K gene regulatory region, either before or after induction of the colicin K gene promoter

    Spectral estimation for spatial point patterns

    Full text link
    This article determines how to implement spatial spectral analysis of point processes (in two dimensions or more), by establishing the moments of raw spectral summaries of point processes. We establish the first moments of raw direct spectral estimates such as the discrete Fourier transform of a point pattern. These have a number of surprising features that departs from the properties of raw spectral estimates of random fields and time series. As for random fields, the special case of isotropic processes warrants special attention, which we discuss. For time series and random fields white noise plays a special role, mirrored by the Poisson processes in the case of the point process. For random fields bilinear estimators are prevalent in spectral analysis. We discuss how to smooth any bilinear spectral estimator for a point process. We also determine how to taper this bilinear spectral estimator, how to calculate the periodogram, sample the wavenumbers and discuss the correlation of the periodogram. In parts this corresponds to recommending suitable separable as well as isotropic tapers in d dimensions. This, in aggregation, establishes the foundations for spectral analysis of point processes.Comment: 29 pages + 23 pages of supplements, 6 figure

    Autoregulation of the Escherichia coli melR promoter: repression involves four molecules of MelR

    Get PDF
    The Escherichia coli MelR protein is a transcription activator that autoregulates its own promoter by repressing transcription initiation. Optimal repression requires MelR binding to a site that overlaps the melR transcription start point and to upstream sites. In this work, we have investigated the different determinants needed for optimal repression and their spatial requirements. We show that repression requires a complex involving four DNA-bound MelR molecules, and that the global CRP regulator plays little or no role

    Unusually Situated Binding Sites for Bacterial Transcription Factors Can Have Hidden Functionality

    Get PDF
    A commonly accepted paradigm of molecular biology is that transcription factors control gene expression by binding sites at the 5' end of a gene. However, there is growing evidence that transcription factor targets can occur within genes or between convergent genes. In this work, we have investigated one such target for the cyclic AMP receptor protein (CRP) of enterotoxigenic Escherichia coli. We show that CRP binds between two convergent genes. When bound, CRP regulates transcription of a small open reading frame, which we term aatS, embedded within one of the adjacent genes. Our work demonstrates that non-canonical sites of transcription factor binding can have hidden functionality

    Transcription factor distribution in Escherichia coli: studies with FNR protein

    Get PDF
    Using chromatin immunoprecipitation (ChIP) and high-density microarrays, we have measured the distribution of the global transcription regulator protein, FNR, across the entire Escherichia coli chromosome in exponentially growing cells. Sixty-three binding targets, each located at the 5′ end of a gene, were identified. Some targets are adjacent to poorly transcribed genes where FNR has little impact on transcription. In stationary phase, the distribution of FNR was largely unchanged. Control experiments showed that, like FNR, the distribution of the nucleoid-associated protein, IHF, is little altered when cells enter stationary phase, whilst RNA polymerase undergoes a complete redistribution
    corecore