
 
 

Unusually Situated Binding Sites for Bacterial
Transcription Factors Can Have Hidden
Functionality
Haycocks, James; Grainger, David

DOI:
10.1371/journal.pone.0157016
10.1371/journal.pone.0157016
License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Haycocks, JRJ & Grainger, DC 2016, 'Unusually Situated Binding Sites for Bacterial Transcription Factors Can
Have Hidden Functionality', PLoS ONE, vol. 11, no. 6, e0157016. https://doi.org/10.1371/journal.pone.0157016,
https://doi.org/10.1371/journal.pone.0157016

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/185495308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1371/journal.pone.0157016
https://doi.org/10.1371/journal.pone.0157016
https://research.birmingham.ac.uk/portal/en/publications/unusually-situated-binding-sites-for-bacterial-transcription-factors-can-have-hidden-functionality(d10980ae-4746-4c1e-9216-33f576fce04d).html


RESEARCH ARTICLE

Unusually Situated Binding Sites for Bacterial
Transcription Factors Can Have Hidden
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Institute of Microbiology and Infection, School of Biosciences, College of Life and Environmental Sciences,
University of Birmingham, Edgbaston, Birmingham, United Kingdom

* d.grainger@bham.ac.uk

Abstract
A commonly accepted paradigm of molecular biology is that transcription factors control

gene expression by binding sites at the 5' end of a gene. However, there is growing evi-

dence that transcription factor targets can occur within genes or between convergent

genes. In this work, we have investigated one such target for the cyclic AMP receptor pro-

tein (CRP) of enterotoxigenic Escherichia coli. We show that CRP binds between two con-

vergent genes. When bound, CRP regulates transcription of a small open reading frame,

which we term aatS, embedded within one of the adjacent genes. Our work demonstrates

that non-canonical sites of transcription factor binding can have hidden functionality.

Introduction
A long standing view is that promoters, and transcription factor binding sites, should locate to
the 5' end of an annotated gene [1]. Unexpectedly, recent genome-wide studies of RNA poly-
merase distribution, and transcription factor binding, have shown that the situation is more
complex [2]. Notably, transcription factor binding sites are frequently found within genes or
between convergent genes. For example, RutR (a regulator of pyrimidine catabolism) binds
predominantly at sites within genes [3]. Similarly, LeuO (a regulator of leucine biosynthesis)
binds to numerous targets between convergent genes [4]. A major challenge is to understand if,
and how, such transcription factor binding sites contribute to gene regulation.

In this work we have focused on the the cAMP receptor protein (CRP). Widely conserved in
bacteria, CRP is global regulator of transcription that responds to cAMP levels [1]. When
bound to DNA, CRP regulates transcription by one of two distinct mechanisms. For example,
at class I promoters, CRP binds upstream of the promoter -35 element and interacts with the
C-terminal domain of the RNA polymerase α-subunit [5–7]. Conversely, at class II promoters,
CRP binds close to the promoter -35 element and interacts with the N-terminal domain of the
RNA polymerase α-subunit [8, 9]. In both cases, CRP stimulates transcription [5–9]. Recently,
we have shown that CRP binds numerous sites that are not close to the 5' end of an annotated
gene [10, 11]. In this work we have focused on one such atypical target; a CRP site between two
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convergent genes. Our data show that CRP activates expression of a small open reading frame
(ORF) completely embedded within one of these convergent genes. Activation occurs by a
standard class II CRP-dependent mechanism. Thus, although the genomic context of the CRP
binding site is unusual, gene regulation proceeds via a well-defined mechanism.

Methods and Materials

Strains, plasmids and oligonucleotides
Strains and plasmids used are listed in Table 1. Oligonucleotides used are listed in Table 2.

β-galactosidase assays
β-galactosidase assays were done according to the method of Miller [12]. Cells were grown in
M9 minimal media supplemented with 1% fructose to stationary phase as specified in figure
legends. Since PaatS was 2-fold more active in stationary phase cultures compared to log phase
cultures the cells from the former phase of growth were used in all experiments. Values shown
are the mean of three independent experiments. Error bars represent the standard deviation of
three independent experiments. To calculate P we used a paired, two-tailed, student’s t test.

Table 1. Strains and plasmids used in this study.

Strain or plasmid Description Source

Strains

Escherichia coli
M182

Δlac galK galU strA [39]

Escherichia coli
M182Δcrp

[39]

Plasmids

pRW50 Broad-host-range lac fusion vector for cloning promoters on EcoRI–
HindIII fragments: contains the RK2 origin of replication and encodes

TcR.

[40]

pSR pBR322-derived plasmid containing an EcoRI–HindIII fragment upstream
of the λoop transcription terminator

[17]

pRW225 pRW50-derived plasmid in which the ribosome binding site upstream of
lacZ has been deleted.

[23]

pDCRP crp gene preceding its native promoter (located on EcoRI-SalI flanked
fragment). pBR322 derived. Encodes AmpR. ColE1 origin.

[41]

doi:10.1371/journal.pone.0157016.t001

Table 2. Oligonucleotides used in this study.

Oligonucleotide
name

Sequence (5'-3') Source

Oligonucleotides used to generate PaatS derivatives

aatS1 For GGCTGCGAATTCATAAAGTGATAAAAATCACATAAAATTTTTATTAAAAGGATATAACCTTCATATCACTTGTAATTAAATTTGTGTCA This
study

aatS1 Rev GCCCGAAGCTTCATGGATATACTTCTTAAGTATTATAAACAAGGTGGAACAGTTGTTATGGTAACCCATGACACAAATTTAATTACAA This
study

aatS2 Rev GCCCGAAGCTTCATGGATATTGAAGAAAAGTATTATAAACAAGGTGGAACAGTTGTTATGGTAACCCATGACACAAATTTAATTACAA This
study

Oligonucleotides used for primer extension experiments

D49724 GGTTGGACGCCCGGCATAGTTTTTCAGCAGGTCGTTG [13]

doi:10.1371/journal.pone.0157016.t002
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Primer extension
Primer extension was done as described by Lloyd et al. [13]. Briefly, RNA was extracted from
M182 cells (or the Δcrp derivative) harbouring pRW50 containing the aatS1 promoter frag-
ment. Extractions were done using a Qiagen RNeasy mini kit according to the manufacturer’s
instructions and residual DNA was removed using a Turbo DNA-free kit (Ambion). RNA
integrity was then checked by visualisation following agarose gel electrophoresis. The ratio of
absorbance at 260 nm and 280 nm was used to assess the purity of the RNA. Primer extension
products were analysed on a 6% denaturing polyacrylamide gel alongside size standards gener-
ated by manual sequencing of M13 phage DNA. Full gel images are provided in the supporting
information (S1 Fig).

Proteins
CRP and σ70 proteins were purified as previously described [14, 15]. RNA polymerase core
enzyme was purchased from Cambio, and was incubated at 37°C with a ten-fold molar excess
of σ70 before use to generate RNA polymerase holoenzyme.

DNAse I footprinting
DNA templates were generated by excision of AatII-HindIII fragments from maxipreps of pSR
plasmid containing the 134 bp aatS1 promoter fragment. The resulting 212 bp AatII-HindIII
fragment was labelled at theHindIII end using γ-dATP and T4 polynucleotide kinase. Foot-
printing reactions were done as previously described [15] in buffer containing 120 mM KCl,
100 μM EDTA, 20 mM Tris pH 7, 10 mMMgCl2 and ~10 nM of PaatS DNA. Reactions also
containing 12.5 μg ml-1 Herring Sperm DNA as a competitive inhibitor. Footprints were ana-
lysed on denaturing 6% polyacrylamide gels alongside calibrating Maxam-Gilbert G/A ladders
[16]. Full gel images are provided in the supporting information (S1 Fig).

Multi-round in vitro transcription assays
In vitro transcription reactions were carried out as described by Savery et al., [14] using the
method of Kolb et al. [17]. Supercoiled DNA was extracted fromM182 cultures harbouring
pSR containing the aatS1 fragment. Reaction buffer contained 20 mM Tris pH 7.9, 200 mM
GTP/ATP/CTP, 10 mM UTP, 5 μCi (α32P) UTP, 500 mMDTT, 5 mMMgCl2, 100 μg ml-1

BSA and 0.2 mM cAMP. Template DNA (at a final concentration of 16 μg ml-1) was incubated
with CRP at 37°C for 5 minutes in reaction buffer, prior to the addition of RNA polymerase
holoenzyme to start the reaction. Full gel images are provided in the supporting information
(S1 Fig).

Bioinformatics
NCBI ORF finder was used to search for putative genes [18]. NCBI BLAST was used to search
for aatS homologues. A list of DUF1602-containing proteins was obtained using the InterPro
tool [19], the list is correct as of 14/01/16.

Results

Identification of promoter-like DNA sequence elements between two
convergent genes
The starting point for this work was our previous analysis of global CRP binding in enterotoxi-
genic Escherichia coli (ETEC) [11]. This work predicted a CRP target between the convergent
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genes aatC (encoding a subunit of a transport system) and tnpA (encoding a transposase). The
genomic context of the CRP site is shown in Fig 1A and the surrounding DNA sequence is
shown in Fig 1B. We searched the locus for promoters that may be under the control of CRP.
A sequence (5'-TAACCT-3') that resembled a promoter -10 hexamer was found close to the
CRP site within the aatC coding region (Fig 1B). A 189 bp ORF, which we named aatS, and a
ribosome binding site (RBS) were also identified (Fig 1B). Note that aatS fully overlaps aatC
but is in the opposite orientation. We considered that the overlap might result from aatC being
annotated incorrectly. However, on close examination, this seems unlikely; there is no alterna-
tive stop codon within the aatC open reading frame. Furthermore, the full aatC sequence is
conserved in numerous bacteria.

PaatS is a CRP-dependent promoter in vivo
Our next aim was to determine if the putative promoter upstream of aatS (PaatS) was func-
tional. Thus, a 134 bp DNA fragment containing the sequence shown in Fig 1B, flanked by
EcoRI and HindIII restriction sites, was generated. The DNA fragment, named aatS1, was
cloned upstream of lacZ in plasmid pRW50 to create a PaatS::lacZ fusion. Next, E. coliM182
and the Δcrp derivative were transformed with the resulting plasmid. Transformants were cul-
tured in liquid media and RNA was isolated as a template for primer extension. A 166 nucleo-
tide primer extension product was observed using RNA fromM182. Conversely, little
extension product was observed using RNA from the Δcrp derivative (compare lanes 5 and 6 in
Fig 2A). Thus, the aatS transcription start site (marked “+1” in Fig 1B) is located 4 bp down-
stream of the putative aatS promoter -10 hexamer. Furthermore, PaatS is poorly active in the

Fig 1. The aatPABC operon of ETEC H10407. Schematic of the aatPABC operon and adjacent tnpA gene. The two DNA strands
are shown as black lines. Known genes are shown as black arrows and the predicted aatS gene as a grey arrow. Gene names are
shown in italic and gene function in parenthesis. The position of a putative CRP binding site is indicated by striped ovals.A.
Sequence if the tnpA-aatC intergenic region. The CRP site is highlighted as a striped rectangle with the two half sites highlighted
bold. The start codon of the aatS open reading frame is highlighted with a grey rectangle. The transcription start site, as determined
by mRNA primer extension is denoted “+1” and indicated by a bent arrow. Distances upstream (-) and downstream (+) of this start
site are numbered. The -35 and -10 hexamers are boxed, and the ribosome binding site (RBS) is underlined.

doi:10.1371/journal.pone.0157016.g001
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absence of CRP. Consistent with our primer extension analysis, PaatS controlled expression of
lacZ was also significantly reduced in cells lacking CRP (P = 0.018; Fig 2B).

PaatS is a CRP dependent promoter in vitro
We next confirmed activation of PaatS by CRP using in vitro transcription assays. The aatS1
DNA fragment was cloned upstream of the λoop transcription terminator in plasmid pSR.
Thus, the transcript generated from PaatS is expected to be 169 nucleotides (nt) in length.
Note that, pSR also encodes RNAI; a 108 nt factor independent transcript derived from the
plasmid replication origin. Thus, we observed two bands on denaturing PAGE gels (Fig 2C).
As expected, synthesis of RNAI did not require CRP. However, production of the larger 169 nt
aatS transcript was stimulated by CRP.

Fig 2. Characterisation of the PaatS promoter. A. Primer extension analysis of the aatS transcript. Lanes 1–4 on the
gel are arbitrary size standards, used for calibration, generated by sequencing of M13mp18 phage DNA. Lane 5 shows
the primer extension product generated using RNA from wildtype M182 cells carrying the aatS1::lacZ fusion. Lane 6
shows the primer extension product generated using RNA fromM182Δcrp cells carrying the aatS1::lacZ fusion. The
transcription start site is indicated in Fig 1B. B. β-galactosidase activity determined using lysates of M182 wildtype or
M182Δcrp cells carrying PaatS cloned upstream of lacZ in plasmid pRW50. Values shown are percentages of activity
observed in strain M182 (92 Miller units). We obtained 7 and 3 Miller units of activity from lysates of M182 or M182Δcrp
carrying promoterless pRW50. Error bars represent the standard deviation of three independent experiments. C.Multi-
round in vitro transcription assay using PaatS. The aatS1 DNA fragment was cloned into pSR upstream of a λoop
terminator. Purified, supercoiled pSR plasmid was incubated with purified CRP at 37°C, and the reaction started by the
addition of 400 nM σ70- RNA polymerase holoenzyme. CRP concentrations are; 0 nM, 200 nM, or 400 nM. The 108 nt
RNAI transcript from the pSR replication origin, and the 169 nt transcript from PaatS, are indicated. The gel is calibrated
with an arbitrary G+A DNA sequencing reaction as a size standard.

doi:10.1371/journal.pone.0157016.g002
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CRP binds a site overlapping the PaatS -35 element
To confirm CRP binding to the predicted target upstream of PaatS we used DNAse I footprint-
ing. The result of the experiment is shown in Fig 3. Lane 1 shows the banding pattern resulting
from DNAse I cleavage of aatS1 in the absence of CRP. Alterations to this pattern are evident in
lanes 2–6 as increasing concentrations of CRP are added. Thus, CRP induced the appearance of
three hypersensitive bands (starred) and protected the flanking DNA regions (underlined). The
footprint aligns precisely with the predicted DNA target for CRP. The CRP site is 39.5 bases
upstream of the PaatS transcription start site (Fig 1B). However, we note that the aatSmRNA

Fig 3. Binding of CRP to the PaatS region.DNAse I footprint analysis of the PaatS region. The lane
labelled ‘G+A’ is a Maxim/Gilbert G+A sequencing reaction. Lane 1 shows the cleavage pattern obtained
from aatS1 DNA digested with DNAse I in the absence of CRP. Lanes 2–6 show DNAse I cleavage patterns
generated in the presence of increasing concentrations of CRP (0.35 μM, 0.7 μM, 1.05 μM, 1.4 μM and
2.1 μM). The predicted CRP site is indicated by a hashed grey bar. DNA protection is indicated by black
dashes, hypersensitive bends are highlighted by stars.

doi:10.1371/journal.pone.0157016.g003
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start is 4 bp, rather than the usual 7 bp, downstream of the promoter -10 element. Hence, CRP
is well positioned to interact with RNA polymerase via a standard class II mechanism.

The aatS coding region is preceded by a functional ribosome binding site
The predicted aatSORF is located 82 bp downstream of the aatS transcription start site, within
the coding region of aatC. We noticed that the 5' end of the aatSmRNA contains a sequence,
5'-UUAAGAAGU-3', that resembles a RBS (5'-UAAGGAGGU-3') [20, 21]. In addition, the
predicted aatS RBS is located 6 bp upstream of the aatS start codon, a position suitable for
translation initiation [22]. To determine if the RBS was functional, we created a translational
aatS1::lacZ fusion and explored the effects of mutating the RBS on lacZ expression. Thus, we
generated a derivative of the aatS1 fragment, called aatS2, where the sequence of the RBS was
altered to 5'-UUUUCUUCA-3' (Fig 4). Both aatS1 and aatS2 were translationally fused to
lacZ by cloning into pRW225 [23]. Resulting plasmids were used to transform M182 and the
Δcrp derivative. LacZ activities were then determined in lysates of transformants grown in

Fig 4. The aatSmRNA contains a functional ribosome binding site. The graph shows activity of different aatS:lacZ translational
fusions. The wildtype ribosome binding site (5'-AAGAAG-3') in the aatS1 fragment was mutated to (5'-TTCTTC-3') in aatS2. LacZ activites
was determined using the lysates of stationary phase M182 or M182Δcrp. In M182 cells crp was supplied in trans by plasmid pCRP that
encodes crp under the control of its own promoter. Values shown are percentages of activity observed in strain M182 (5 Miller units). We
obtained 0.25 and 0.26 Miller units of activity from lysates of M182 or M182Δcrp, carrying promoterless pRW225, respectively. Error bars
represent the standard deviation of three independent experiments.

doi:10.1371/journal.pone.0157016.g004
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liquid culture (Fig 4). LacZ expression was significantly reduced when the aatS RBS was
mutated (P = 0.011). Residual LacZ expression, driven by the aatS2::lacZ fusion in M182Δcrp
cells, was not significantly different from background LacZ activity (P = 0.096). Background
LacZ activity was obtained using M182Δcrp transformed with pRW225 having no promoter
insert.

AatS contains a conserved domain of unknown function
We cannot exclude the possibility that PaatS drives transcription of a small or antisense RNA.
However, the presence of a functional RBS, appropriately positioned upstream of the aatS
open reading frame, is consistent with the transcript being an mRNA. If this is the case, transla-
tion would result in the production of a 62 amino acid AatS peptide. To better understand
AatS we used BLAST to identify 38 microbial proteins with a significantly similar sequence (E-
value<10) in the NCBI blastp database. The search also reveals that AatS shares 67% identity
with a conserved domain of unknown function (DUF1602, E-value: 4.07e-7). Genes encoding
DUF1602 are found in diverse species in all kingdoms of life (Table 3). Strikingly, as in the case
of aatS, genes encoding DUF1602 are often genetically associated with, and occasionally over-
lap, genes encoding transport systems. We conclude that aatSmay encode a small protein that
could be an ancillary subunit of the Aat transport system in ETEC.

Discussion
In this study we have characterised the function of a predicted CRP binding site located
between two convergent genes. We show that CRP activates transcription of aatS; a small ORF
embedded within the much larger aatC gene. The aatPABC operon encodes a type I secretion
system (the Aat system) found in many pathogenic bacteria [24, 25]. The presence of a func-
tional RBS, correctly positioned upstream of aatS, suggests that the gene encodes a small pro-
tein rather than a regulatory RNA. Interestingly, many small proteins in bacteria localise to the
membrane and function as accessory factors in transport systems [26]. Consistent with such a
function, aatS is genetically associated with genes encoding transport systems in many bacteria.
Furthermore, a potential transmembrane helix is predicted between residues 4 and 21 of AatS
[27].

Documented instances of overlapping, protein-encoding, genes in bacteria are rare [28]. We
are aware of only two examples; rpmH is encoded within rnpA in Thermus thermophilus and
setAB resides inside the pic gene of E. coli 042 and Shigella flexneri [29, 30]. However, we specu-
late that further overlapping transcription units may become evident as unusual transcription
factor targets are examined in detail. For instance, in a study of 154Mycobacterium tuberculosis
transcription factors, 75% of binding targets were located inside genes [31]. Similarly, a study
of 116 transcription factors in E. coli, identified many intragenic binding events [32]. Presum-
ably, some of these targets will control production of unannotated transcripts. Thus, in the case

Table 3. Phylogentic distribution of DUF1602-containing proteins.

Kingdom/Species Number of DUF1602-containing
proteins

Archaea (all Euryarchaeota) 5

Bacteria:Actinobacteria:Chlamydiae:Cyanobacteria:Firmicutes:
Proteobacteria:

146202218100

EukaryotesFungi:Metazoa:Chlorophyta:Streptophyta: 59141143

Unclassified sequences 4

doi:10.1371/journal.pone.0157016.t003

Unusually Situated Binding Sites for Bacterial Transcription Factors Can Have Hidden Functionality

PLOS ONE | DOI:10.1371/journal.pone.0157016 June 3, 2016 8 / 11



we have examined, the position of the CRP site is only surprising on first inspection. Detailed
investigation of the aat locus reveals that CRP acts via a well-established mechanism and it is
the position of aatS, embedded within aatC, which confounds the situation. In summary,
whilst some bacterial transcription factors bind primarily in expected locations [33–35] many
have unusually situated targets [3,10,11,36,37]. Surprising binding sites are often ignored [36]
or dismissed as artefacts [38]. This work demonstrates that careful genetic and biochemical
analysis can identify regulatory function for such targets.

Supporting Information
S1 Fig. Raw gel images. Panels A-C show raw gel images from Figs 2A, 2C and 3 respectively.
(PDF)
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