3,310 research outputs found

    Isolated major aortopulmonary collateral as the sole pulmonary blood supply to an entire lung segment

    Get PDF
    Congenital systemic-to-pulmonary collateral arteries or major aortopulmonary collaterals are associated with cyanotic congenital heart disease with decreased pulmonary blood flow. Though it is usually associated with congenital heart diseases, there is an increased incidence of isolated acquired aortopulmonary collaterals in premature infants with chronic lung disease. Interestingly, isolated congenital aortopulmonary collaterals can occur without any lung disease, which may cause congestive heart failure and require closure. We present a neonate with an echocardiogram that showed only left-sided heart dilation. Further workup with a CT angiogram demonstrated an anomalous systemic artery from the descending thoracic aorta supplying the left lower lobe. He eventually developed heart failure symptoms and was taken to the catheterization laboratory for closure of the collateral. However, with the collateral being the only source of blood flow to the entire left lower lobe, he required surgical unifocalization. Isolated aortopulmonary collaterals without any other congenital heart disease or lung disease are rare. Our patient is the first reported case to have an isolated aortopulmonary collateral being the sole pulmonary blood supply to an entire lung segment. Due to its rarity, there is still much to learn about the origin and development of these collaterals that possibly developed prenatally

    To what distances do we know the confining potential?

    Full text link
    We argue that asymptotically linear static potential is built in into the common procedure of extracting it from lattice Wilson loop measurements. To illustrate the point, we extract the potential by the standard lattice method in a model vacuum made of instantons. A beautiful infinitely rising linear potential is obtained in the case where the true potential is actually flattening. We argue that the flux tube formation might be also an artifact of the lattice procedure and not necessarily a measured physical effect. We conclude that at present the rising potential is known for sure up to no more than about 0.7 fm. It may explain why no screening has been clearly observed so far for adjoint sources and for fundamental sources but with dynamical fermions. Finally, we speculate on how confinement could be achieved even if the static potential in the pure glue theory is not infinitely rising.Comment: 16 pages, 5 figures. Additional arguments presented, a new figure and references adde

    High-Contrast NIR Polarization Imaging of MWC480

    Full text link
    One of the key predictions of modeling from the IR excess of Herbig Ae stars is that for protoplanetary disks, where significant grain growth and settling has occurred, the dust disk has flattened to the point that it can be partially or largely shadowed by the innermost material at or near the dust sublimation radius. When the self-shadowing has already started, the outer disk is expected to be detected in scattered light only in the exceptional cases that the scale height of the dust disk at the sublimation radius is smaller than usual. High-contrast imaging combined with the IR spectral energy distribution allow us to measure the degree of flattening of the disk, as well as to determine the properties of the outer disk. We present polarimetric differential imaging in HH band obtained with Subaru/HiCIAO of one such system, MWC 480. The HiCIAO data were obtained at a historic minimum of the NIR excess. The disk is detected in scattered light from 0\farcs2-1\farcs0 (27.4-137AU). Together with the marginal detection of the disk from 1998 February 24 by HST/NICMOS, our data constrain the opening half angle for the disk to lie between 1.3θ2.2\leq\theta\leq 2.2^\circ. When compared with similar measures in CO for the gas disk from the literature, the dust disk subtends only \sim30% of the gas disk scale height (H/R\sim0.03). Such a dust disk is a factor of 5-7 flatter than transitional disks, which have structural signatures that giant planets have formed.Comment: 21 pages, 6 figures, 1 table, ApJ accepted 2012-05-0

    UV spectral variability in the Herbig Ae star HR 5999. 11: The accretion interpretation

    Get PDF
    We report recent IUE high- and low-dispersion observations with the IUE long wavelength camera (LWP) and short wavelength camera (SWP) of the Herbig Ae star HR 5999. We have found a dramatic change in the structure of the Mg II h and k lines (2795.5, 2802.7 A) along with some continuum flux excesses especially at the short end of the SWP camera. LWP high dispersion observations of HR 5999 obtained between 1979 and 1990, at times of comparatively low UV continuum fluxes, exhibit P Cygni type m profiles in the Mg II resonance doublet. In contrast, observations made from September 1990 through March 16-18, 1992, with high W continuum fluxes, present Mg II lines with reverse P Cygni profiles indicative of some active episodic accretion. Accreting gas can also be detected in the additional red wings of the various Fe II and Mn II absorption lines, with velocities up to +300-350 km/s (September 1990). By September 10, 1992 the Mg II profile had returned to the type III P Cygni profile similar to those from earlier spectra. The correlation between the presence of large column densities of accreting gas and the continuum light variations supports suggestions by several authors that HR 5999 is surrounded by an optically thick, viscously heated accretion disk. Detection of accreting gas in the line of sight to HR 5999 permits us to place constraints on our viewing geometry for this system. A discussion is included comparing the spectral and physical similarities between HR 5999 and the more evolved proto-planetary candidate system, beta Pictoris

    Probing stellar accretion with mid-infrared hydrogen lines

    Get PDF
    In this paper we investigate the origin of the mid-infrared (IR) hydrogen recombination lines for a sample of 114 disks in different evolutionary stages (full, transitional and debris disks) collected from the {\it Spitzer} archive. We focus on the two brighter {H~{\sc i}} lines observed in the {\it Spitzer} spectra, the {H~{\sc i}}(7-6) at 12.37μ\mum and the {H~{\sc i}}(9-7) at 11.32μ\mum. We detect the {H~{\sc i}}(7-6) line in 46 objects, and the {H~{\sc i}}(9-7) in 11. We compare these lines with the other most common gas line detected in {\it Spitzer} spectra, the {[Ne~{\sc iii}]} at 12.81μ\mum. We argue that it is unlikely that the {H~{\sc i}} emission originates from the photoevaporating upper surface layers of the disk, as has been found for the {[Ne~{\sc iii}]} lines toward low-accreting stars. Using the {H~{\sc i}}(9-7)/{H~{\sc i}}(7-6) line ratios we find these gas lines are likely probing gas with hydrogen column densities of 1010^{10}-1011^{11}~cm3^{-3}. The subsample of objects surrounded by full and transitional disks show a positive correlation between the accretion luminosity and the {H~{\sc i}} line luminosity. These two results suggest that the observed mid-IR {H~{\sc i}} lines trace gas accreting onto the star in the same way as other hydrogen recombination lines at shorter wavelengths. A pure chromospheric origin of these lines can be excluded for the vast majority of full and transitional disks.We report for the first time the detection of the {H~{\sc i}}(7-6) line in eight young (< 20~Myr) debris disks. A pure chromospheric origin cannot be ruled out in these objects. If the {H~{\sc i}}(7-6) line traces accretion in these older systems, as in the case of full and transitional disks, the strength of the emission implies accretion rates lower than 1010^{-10}M_{\odot}/yr. We discuss some advantages of extending accretion indicators to longer wavelengths

    X-ray Emission and Corona of the Young Intermediate Mass Binary θ1\theta^1 Ori E

    Full text link
    Theta 1 Ori E is a young, moderate mass binary system, a rarely observed case of spectral-type G-giants of about 3 Solar masses, which are still collapsing towards the main sequence. We have obtained high resolution X-ray spectra with Chandra and find that the system is very active and similar to coronal sources, having emission typical of magnetically confined plasma: a broad temperature distribution with a hot component and significant high energy continuum; narrow emission lines from H- and He-like ions, as well as a range of Fe ions, and relative luminosity, L_x/L_bol = 0.001. Density, while poorly constrained, is consistent with the low density limits as determined from Mg XI and Ne IX emission lines. Coronal elemental abundances are sub-Solar, with Ne being the highest at about 0.4 times Solar. We find a possible trend in Trapezium hot plasmas towards low relative abundances of Fe, O, and Ne, which is hard to explain in terms of the dust depletion scenarios of low-mass young stars. Variability was unusually low relative to other coronally active stars. The emission is similar to post main-sequence G-stars. Coronal structures could be compact or comparable to the dimensions of the stellar radii. We conclude that the X-rays in theta 1 Ori E are generated by a convective dynamo.Comment: Accepted by ApJ (scheduled for Dec 2009, v707

    Emotional evaluation and memory in behavioral variant frontotemporal dementia

    Get PDF
    Behavioral variant frontotemporal dementia (bvFTD) affects emotional evaluation, but less is known regarding the patients' ability to remember emotional stimuli. Here, bvFTD patients and age-matched controls studied positive, negative, and neutral pictures followed by a recognition memory test. Compared to controls, bvFTD patients showed a reduction in emotional evaluation of negative scenes, but not of positive or neutral scenes. Additionally, the patients showed an overall reduction in recognition memory accuracy, due to impaired recollection in the face of relatively preserved familiarity. These results show that bvFTD reduces the emotional evaluation of negative scenes and impairs overall recognition memory accuracy and recollection

    Health Monitoring System for Composite Structures

    Get PDF
    An automated system was developed to monitor the health status of composites. It uses the vibration characteristics of composites to identify a component's damage condition. The vibration responses are characterized by a set of signal features defined in the time, frequency and spatial domains. The identification of these changes in the vibration characteristics corresponding to different health conditions was performed using pattern recognition principles. This allows efficient data reduction and interpretation of vast amounts of information. Test components were manufactured from isogrid panels to evaluate performance of the monitoring system. The components were damaged by impact to simulate different health conditions. Free vibration response was induced by a tap test on the test components. The monitoring system was trained using these free vibration responses to identify three different health conditions. They are undamaged vs. damaged, damage location and damage zone size. High reliability in identifying the correct component health condition was achieved by the monitoring system
    corecore