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Abstract

An automated system was developed to monitor the health
status of composites. It uses the vibration characteristics of
composites to identify a component's damage condition.
The vibration responses are characterized by a set of signal
features defined in the time, frequency and spatial domains.
The identification of these changes in the vibration
characteristics corresponding to different health conditions
was performed using pattern recognition principles. This
allows efficient data reduction and interpretation of vast
amounts of information. Test components were
manufactured from isogrid panels to evaluate performance
of the monitoring system. The components were damaged
by impact to simulate different health conditions. Free
vibration response was induced by a tap test on the test
components. The monitoring system was trained using
these free vibration responses to identify three different
health conditions. They are undamaged vs. damaged,
damage location, and damage zone size. High reliability in
identifying the correct component health condition was
achieved by the monitoring system.

Monitoring Priacil

The damage monitoring of composite using pattern
recognition principles has been shown to be feasible” with
a limited amount of data from a composite cantilever beam.
The changes in structural vibration can be associated with
the damage in a monitored structure. 2% These changes can
be efficiently interpreted through the use of pattern
recognition method. The application of pattern recognition
method, 1 7 requires prior knowledge in the correct
classification of an output class using available input
information of a monitored structure. The knowledge can
be acquired through a training process. This process uses
a database of relevant input information that corresponds to
a defined monitored health condition of the structure. To
obtain the necessary information, the input data can be
acquired from a network of suitable sensors. This input
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information can be described as a feature vector. The
features are defined according to a specific application. The
feature information is used in the training of a monitoring
system to obtain an optimum feature set for a specific
classification of cutput. This optimum feature set is used by
the classifiers to perform the output classification. The
commonly used classifiers in pattern recognition are
Nearest Neighbor Criteria (NNC), Gaussian and Fisher.®
omposite ea itoring Sv.

A health monitoring system for composite structures,
Figure 1, was developed on a microprocessor computer to
implement the above principles in the classification of
structural component's health conditions. A schematic of
the monitoring system is presented in Figure 2. The system
consists of a 16 channel signal conditioner, a post-amplifier
with noise filler, and an analog-to-digital (A/D) card
plugged into a rack mounted 486/33MHz personal
computer. The A/D card is capable of digitizing data up to
150KHz for one channel. An integrated software was
developed for the system, Figure 3. This software is menu
driven. It's capabilities include data acquisition, signal
processing, feature extraction, classification, and file
management. On screen calibration procedures are also
provided. Classification results on the component health
condition are provided at the end of data acquisition. Data
can be saved in files for further training, evaluation or
archive.

Test Components

The test components were manufactured from isogrid
panels. The panels were fabricated using IM-7 fiber and
977-2 epoxy. The panels were 58 cm (23") by 50.5 cm
(20™. They consisted of a twelve ply graphite/epoxy skin
with ply thickness of approximately 2mm (0.079") and
stiffener ribs 1.5cm (0.6") high. Fiber direction was
unidirectional along the ribs and [+-60,0,0,-+60]s in the
skin, as shown Figure 4. The isogrid panel material
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properties are presented in Table 1. Four test components
were cut from each panel. The test component dimensions
were 17.8cm (77) by 22.9em (97), Figure 5. A total of 28
components were made from seven isogrid panels.

The test components were first inspected by ultrasonic
C-scan to document the undamaged status. Then damages
were introduced on the test components by impact. Among
the 28 components, 20 were selected to be damaged by
impact. Impacts were set at different energy levels to obtain
arange of damage sizes. Damages were induced in the test
components at two locations; center and off-center,
Figure 6. The test components were again inspected by
ultrasonic C-scan to document the actual damage locations
and sizes. Inspection results found damage sizes measured
from 4 mm to 33.5 mm in diameter. Table 2 summarizes
the measurement results on the damage sizes and locations.
Figure 6 presents a comparison of the C-scans before and
after the impact damage of the same test component.

The components were instrumented with 16 strain gages
mounted in a 4x4 equi-distance grid on the components, as
shown in Figure 5. The free vibration was initiated by
tapping the component hanging from a metal stand with a
bungy cord Eight tap tests were performed on each
component, before and after they were damaged by impact.
Some typical waveforms of free vibration from selected
channels are presented in Figure 7. Corresponding
frequency spectra are presented in Figure 8. These
vibration results formed a database for the training and
validation of the composite structure health monitoring
system. ¥
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For the sixteen channels of strain gage, a total of 2,424
signal features were defined. A maximum of 149 features
can be utilized for each channel. These signal features
describe the signal amplitude, range, variance and
cumulative distribution in the time domain. In the
frequency domain, frequency bins are used to define the
highest peak frequency, bandwidth, number of peaks, and
energy in each bin. Amplitude ratios of the highest peaks
among different bins are also defined. A maximum of 20
frequency bins can be used in each channel. The spatial
domain features are defined using all 16 sensors. The
spatial features use the amplitude at each spatial frequency
and the fall rates among the spatial frequencies.

System Performange Evaluation

The monitoring system was trained and evaluated for
performance on the following component health status:

(a) health condition: undamaged or damaged,
(b) damage location: center or off center, and
(c) damage size: small or large.

The free vibration response database consisted of 384 sets
of 16 waveforms acquired from 28 undamaged components
and 20 damage components. Table 3 presents a test matrix.
The test matrix identified the number of components
assigned to each class of health condition. It also identified
the number of components to be used in the system training.
The damage locations were divided into two classes; center
and off-center. Damage sizes were divided into two classes;
small (< 1.65cm/0.65") and large (> 1.65cm/0.65"). Five
tap tests were randomly selected from each component in
this set to be used in the training of the monitoring system.

Two approaches were used in the training. They were
identified as:

(a) Classification without feature normalization.
(b) Classification with feature normalization.

In feature normalization, all signal features from each
component, undamaged or damage, were normalized by the
corresponding feature means calculated from the eight tap
tests of the corresponding undamaged component The
feature normalization was needed in order to maintain a
robust performance which could be affected because of
material property variations from component to component.
Figure 9 presents a comparison of features from undamaged
and damage conditions without feature normalization. The
first part of the curve is the data from the undamaged
component, (IDs 11-74). The second part of the curve is
the data from the damaged components, (IDs 42-31). The
damage size was also plotted in the figure. The undamaged
components were represented with zero damage size. It
shows a wide variation of feature values within each class.
There is no distinction in the feature values between the
undamaged and damaged components. A similar
comparison is presented in Figure 10 using feature
normalization. With feature normalization, there is a
distinct difference in the feature between the undamaged
and damage conditions of the composite components. The
damage components have a higher feature magnitude and
larger feature variance.

The results on monitoring system training for the
classification of three health conditions are summarized in



Table 4. The training errors in identifying the correct health
status using the two approaches were from about 1% to
14%. In all cases, no more than four features were selected
in each of the optimum feature sets. The majonity of the
optimum features were peak frequency amplitude ratios
among different frequency bins. Peak frequency bandwidth
was the next common optimum feature.

After the training, all data was used in the performance
evaluation of the monitoring system. The overall
performance reliability of the system was compiled based
on the number of correct calls on test components' health
status. System reliability was evaluated on a "component”
basis. The decision on a component basis health status was
by the majority vote of the outcome of classification from
the eight tap tests performed on each component. This can
be the choice for monitoring because the inspection
personnel is likely to obtain several tests on the component
before a decision is made on the component's health status.

The monitoring system reliability results are summarized in
Table 5. Between the two approaches, feature
normalization produced consistent and reliable
performances in identifying the components' correct health
status. With feature normalization, the system had a
reliability level of over 90% in the classification of health
status, undamaged or damage. Also, the performance
reliability was consistent among all three classifiers and in
both training and performance evaluation Performance
reliability was not as consistent in the classification of
damage location. The NNC classifier achieved an accuracy
of 80% in making the correct call. In identifying the correct
damage size in the composite components, the NNC
classifier had a reliability of over 95%. Without feature
normalization, the overall accuracies in classification were
not as good and consistent. The highest reliability was
about 85% in identifying the damage location. The NNC
classifier consistently had the best performance among the
three classifiers, with or without the feature normalization.

To visualize the classification results, the optimum features
from each classification were plotted using the principle
components method. The principle components are the
eignvalues of the optimum feature set. The two largest
eignvalues are used as the two principle component axes.
The transformation of the optimum feature set was
performed using the eignvectors corresponding with the two
largest eignvalues. Figures 11 and 12 present the class
clustering for each monitored component heaith condition.
Without feature normalization, the overlapping of two
classes in the feature space was more prominent. With
feature normalization, the class clustering was better
defined, as presented in Figures 13 to |S. A higher degree

of class overlapping and scatter distribution of features
corresponded to a lower reliability in identifying the correct
component health status by the monitoring system.

Conclusions

A health monitoring system for composite structure has
been developed. The system is capable of monitoring three
different health conditions of a composite structure. These
three health conditions are undamaged and damage, damage
location, and damage size. Test components were
manufactured from composite isogrid panels to evaluate the
performances of the monitoring system. A very good
overall reliability of the system was achieved in all three
monitored health conditions. Of the two approaches in
classification of health condition developed for the health
monitoring systems, feature normalization produced a better
system performance reliability.
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Table 1. Mater, ‘es of Isogrid Panel

Tou, J. T. and Gonzalez, R. C., "Pattern Recognition SKIN RIB
Principles,” Addison-Wesley Publishing Co.,
Massachusetts, 1974. E;,x10°psi | 863
E,.x10%psi | 8.63
G, ,x10%psi | 3.30
NU,, 0.3
E, , x10% psi 22.6
E,, x10¢ psi 1.21
Gy, , x108 psi 0.85
NU,, 0.299
Table 2. act Re
Damage Size
Test Sequence Damage Location
Nominal (inch Actual Average (mm)
1 Center 0.5 (125, 12) 1225
2 Center 1 (20, 23) 215
3 Off-Center 0.5 (14, 14.5) 1425
4 Off-Ceater 1 (42,28) 3s
5 Center 0.5 9,9 9
a 6 Center 1 (15.75, 17.9) 16.825
g Off-Center 0.5 (15, 18) 16.5
8 Off-Center 1 (28, 24) 26
9 Center 0.5 (14, 14) 14
10 Ceater 1 (15, 16) 15.5
11 Off-Center 0.5 (1, 11) 11
12 Off-Center 1 (36.5, 28.4) 3245
13 Center 0.5 (14, 13) 13.5
14 Center 1 (22, 20) 21
15 Off-Center 0.5 (15, 13) 14
16 Off-Center 1 (35, 32) 335
17 Center 0.5 (4, 9 4
18 Center 1 (20,21) 20.5
19 Off-Center 0.5 (12, 11) 11.5
20 Off-Center 1 (33, 29) 3l




Table3 Test Matix

Damage Size
None <1.65cm >1.65cm
(0.65") (0.65")
Undamaged 28 (20) - -
ol - 50) 54
Damaged cnter
Center - 6 (4) 4(3)

Note:

() identifies number of data used in health monitoring system training

able 4.  the Health Monitoring SvstemTraining Resul

Without Normalization With Normalization
Optimum - Optimum .
Health Status Feature Training Errer Feature Training Error
Damaged and Undamaged 4 12.9% 3 5.3%
Location 4 1.4% 3 7.1%
' Size 1 11.4% 4 1.4%
Table 5.
Without Normalization With Normalization
Training { NNC | Gaussian Fisher Training | NNC Gaussian Fisher
Undamiged Damaged 88% T7% 60% 63% 95% 96% 96% 90%
Location 98% 85% 80% 80% 93% 80% 65% 70%
Size 89% 70% 60% 60% 98% 95% 80% 85%
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Figure 1. Prototype Health Monitoring System
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Figure 3. Software Architecture Schematic for Health Monitoring System
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Figure 4. Diagram Showing Rib Pattern on [sogrid Panel
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Figure 6. Typical C-Scan Image of Impact Damaged Component
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Figure 7. Typical Vibration Wave Forms
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Figure 8. Corresponding Frequency Spectra
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