1,783 research outputs found
Management of advanced breast cancer with the epothilone B analog, ixabepilone
Despite the activity of standard chemotherapies in advanced breast cancer, disease progression remains inevitable. Most patients exposed to anthracyclines and taxanes develop resistance and a significant subset shows primary resistance. The increasing use of these agents as adjuvant therapy may result in more anthracycline- and taxane-resistant patients in the metastatic setting; few treatment options are available for patients with metastatic breast cancer (MBC) resistant to multiple chemotherapies. The heterogeneity of breast cancer represents another therapeutic challenge. Breast cancers may be classified as luminal, human epidermal growth factor 2 (HER2)-positive, or estrogen receptor-, progesterone receptor-, and human epidermal growth factor 2-negative (ER/PR/HER2-negative, triple negative). HER2-positive and ER/PR/HER2-negative tumors are associated with poor prognosis owing to aggressive disease and poor long-term response to therapy. The epothilone B analog ixabepilone has low susceptibility to multiple mechanisms of resistance and has demonstrated activity in patients with MBC resistant to anthracyclines, taxanes, and/or capecitabine. Ixabepilone is the first epothilone to be approved, as monotherapy or in combination with capecitabine, for treatment of resistant/refractory MBC or locally advanced breast cancer. Treatment with ixabepilone is an option for patients with ER/PR/HER2-negative or HER2-positive disease and/or primary resistance to taxanes
Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer.
Breast cancer remains the leading cause of cancer death in women owing to metastasis and the development of resistance to established therapies. Macrophages are the most abundant immune cells in the breast tumor microenvironment and can both inhibit and support cancer progression. Thus, gaining a better understanding of how macrophages support cancer could lead to the development of more effective therapies. In this study, we find that breast cancer-associated macrophages express high levels of insulin-like growth factors 1 and 2 (IGFs) and are the main source of IGFs within both primary and metastatic tumors. In total, 75% of breast cancer patients show activation of insulin/IGF-1 receptor signaling and this correlates with increased macrophage infiltration and advanced tumor stage. In patients with invasive breast cancer, activation of Insulin/IGF-1 receptors increased to 87%. Blocking IGF in combination with paclitaxel, a chemotherapeutic agent commonly used to treat breast cancer, showed a significant reduction in tumor cell proliferation and lung metastasis in pre-clinical breast cancer models compared to paclitaxel monotherapy. Our findings provide the rationale for further developing the combination of paclitaxel with IGF blockers for the treatment of invasive breast cancer, and Insulin/IGF1R activation and IGF+ stroma cells as potential biomarker candidates for further evaluation
New FTY720-docetaxel nanoparticle therapy overcomes FTY720-induced lymphopenia and inhibits metastatic breast tumour growth
Purpose: Combining molecular therapies with chemotherapy may offer an improved clinical outcome for chemoresistant tumours. Sphingosine-1-phosphate (S1P) receptor antagonist and sphingosine kinase 1 (SK1) inhibitor FTY720 (FTY) has promising anticancer properties, however, it causes systemic lymphopenia which impairs its use in cancer patients. In this study, we developed a nanoparticle (NP) combining docetaxel (DTX) and FTY for enhanced anticancer effect, targeted tumour delivery and reduced systemic toxicity. Methods: Docetaxel, FTY and glucosamine were covalently conjugated to poly(lactic-co-glycolic acid) (PLGA). NPs were characterised by dynamic light scattering and electron microscopy. The cellular uptake, cytotoxicity and in vivo antitumor efficacy of CNPs were evaluated. Results: We show for the first time that in triple negative breast cancer cells FTY provides chemosensitisation to DTX, allowing a four-fold reduction in the effective dose. We have encapsulated both drugs in PLGA complex NPs (CNPs), with narrow size distribution of ~ 100 nm and excellent cancer cell uptake providing sequential, sustained release of FTY and DTX. In triple negative breast cancer cells and mouse breast cancer models, CNPs had similar efficacy to systemic free therapies, but allowed an effective drug dose reduction. Application of CNPs has significantly reversed chemotherapy side effects such as weight loss, liver toxicity and, most notably, lymphopenia. Conclusions: We show for the first time the DTX chemosensitising effects of FTY in triple negative breast cancer. We further demonstrate that encapsulation of free drugs in CNPs can improve targeting, provide low off-target toxicity and most importantly reduce FTY-induced lymphopenia, offering potential therapeutic use of FTY in clinical cancer treatment
Combination of letrozole, metronomic cyclophosphamide and sorafenib is well-tolerated and shows activity in patients with primary breast cancer
PURPOSE: To assess whether the combination of letrozole, metronomic cyclophosphamide and sorafenib (LCS) is well tolerated and shows activity in primary breast cancer (BC). METHODS:Thirteen oestrogen receptor-positive, postmenopausal, T2-4, N0-1 BC patients received the LCS combination for 6 months. In these patients we examined the pharmacokinetics of sorafenib and cyclophosphamide, toxicity of the regimen, the clinical response to therapy and changes in the levels of biologically relevant biomarkers. RESULTS:Adequate plasma concentrations of sorafenib were achieved in patients when it was dosed in combination with L+C. The mean plasma concentrations of C were consistently lower following administration of LCS, compared with administration of L+C only. The most common drug-related grade 3/4 adverse events were skin rash (69.3%), hand-foot skin reaction (69.3%) and diarrhoea (46.1%). According to RECIST Criteria, a clinical complete response was observed in 6 of 13 patients. A significant reduction in tumour size, evaluated with MRI, was also observed between baseline and 14 days of treatment in all 13 patients (P=0.005). A significant reduction in SUV uptake, measured by (18)FDG-PET/CT, was observed in all patients between baseline and 30 days of treatment (P=0.015) and between baseline and definitive surgery (P=0.0002). Using modified CT Criteria, a response was demonstrated in 8 out of 10 evaluable patients at 30 days and in 11 out of 13 evaluable patients at the definitive surgery. A significant reduction in Ki67 expression was observed in all patients at day 14 compared with baseline (P<0.00001) and in 9 out of 13 patients at the definitive surgery compared with baseline (P<0.03). There was also a significant suppression of CD31 and VEGF-A expression in response to treatment (P=0.01 and P=0.007, respectively).CONCLUSIONS:The LCS combination is feasible and tolerable. The tumour response and target biomarker modulation indicate that the combination is clinically and biologically active
Endocrine therapy for breast cancer: a model of hormonal manipulation
Oestrogen receptor (ER) is the driving transcription factor in 70% of breast cancer. Endocrine therapies targeting the ER represent one of the most successful anticancer strategies to date. In the clinic, novel targeted agents are now being exploited in combination with established endocrine therapies to maximise efficacy. However, clinicians must balance this gain against the risk to patients of increased side effects with combination therapies. This article provides a succinct outline of the principles of hormonal manipulation in breast cancer, alongside the key evidence that underpins current clinical practice. As the role of endocrine therapy in breast cancer continues to expand, the challenge is to interpret the data and select the optimal strategy for a given clinical scenario
Synergistic effects of various Her inhibitors in combination with IGF-1R, C-MET and Src targeting agents in breast cancer cell lines
Introduction: Overexpression of the receptor tyrosine kinase HER2 has been reported in around 25% of human breast cancers, usually indicating a poor prognosis. As a result, HER2 has become a popular target for therapy. However, despite recent advances in HER2 targeted therapy, many patients still experience primary and secondary resistance to such treatments. It is therefore important to understand the underlying mechanism of resistance and to develop more effective therapeutic interventions for breast cancer.
Methods: The sensitivity of a panel of seven breast cancer cell lines to treatment with various types HER-family inhibitors alone, or in combination with a selection of other tyrosine kinase inhibitors (TKIs) or chemotherapeutic agents was determined using the Sulforhodamine B colorimetric assay. Receptor expression, cell-cycle distribution, cell signalling and cell migration were determined using flow cytometry, Western blot and Incucyte Zoom Live-Cell Analysis System respectively.
Results: Overall, breast cancer cells were more sensitive to treatment with the irreversible pan-HER family inhibitors, particularly afatinib and neratinib, than treatment with the first-generation reversible inhibitors. Of three HER-2 overexpressing cell lines in this panel, SKBr3 and BT474 were highly sensitive to treatment with HER-family inhibitors (IC50s as low as 3 nM), while MDA-MB-453 was relatively resistant (lowest IC50 = 0.11 μM). When the HER-family inhibitors were combined with other agents such as NVP-AEW541 (an IGF-1R inhibitor), dasatinib (a Src inhibitor) or crizotinib (a c-Met/ALK inhibitor), such combination produced synergistic effects in some of the cell lines examined. Interestingly, co-targeting of Src and HER-family members in MDA-MB-453 cells led to synergistic growth inhibition, suggesting the importance of Src in mediating resistance to HER2-targeting agents. Finally, treatment with the irreversible HER family blockers and dasatinib were also most effective at inhibiting the migration of breast cancer cells.
Conclusion: We concluded that the irreversible inhibitors of HER-family members are generally more effective at inhibiting growth, downstream signalling and migration compared with reversible inhibitors, and that combining HER-family inhibitors with other TKIs such as dasatinib may have therapeutic advantages in certain breast cancer subtypes and warrants further investigation
Neratinib + capecitabine sustains health-related quality of life in patients with HER2-positive metastatic breast cancer and ≥ 2 prior HER2-directed regimens
Health-related quality of life; Metastatic breast cancer; NeratinibCalidad de vida relacionada con la salud; Cáncer de mama metastásico; NeratinibQualitat de vida relacionada amb la salut; Càncer de mama metastàtic; NeratinibPurpose
To characterize health-related quality of life (HRQoL) in patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (MBC) from the NALA phase 3 study.
Methods
In NALA (NCT01808573), patients were randomized 1:1 to neratinib + capecitabine (N + C) or lapatinib + capecitabine (L + C). HRQoL was assessed using seven prespecified scores from the European Organisation for Research and Treatment of Cancer Quality Of Life Questionnaire core module (QLQ-C30) and breast cancer-specific questionnaire (QLQ-BR23) at baseline and every 6 weeks. Descriptive statistics summarized scores over time, mixed models evaluated differences between treatment arms, and Kaplan–Meier methods were used to assess time to deterioration in HRQoL scores of ≥ 10 points.
Results
Of the 621 patients randomized in NALA, patients were included in the HRQoL analysis if they completed baseline and at least one follow-up questionnaire. The summary, global health status, physical functioning, fatigue, constipation, and systemic therapy side effects scores were stable over time with no persistent differences between treatment groups. There were no differences in time to deterioration (TTD) for the QLQ-C30 summary score between treatment arms; the hazard ratio (HR) for N + C vs. L + C was 0.94 (95% CI 0.63–1.40). Only the diarrhea score worsened significantly more in the N + C arm as compared to the L + C arm, and this remained over time (HR for TTD for N + C vs. L + C was 1.71 [95% CI 1.32–2.23]).
Conclusion
In NALA, patients treated with N + C maintained their global HRQoL over time, despite a worsening of the diarrhea-related scores. These results may help guide optimal treatment selection for HER2-positive MBC.This work was supported by Puma Biotechnology Inc., Los Angeles, CA, USA [no grant number is applicable]. Puma Biotechnology Inc. funded the provision of editorial support provided by CMD Consulting and Miller Medical Communications
Variation in the use of advanced imaging at the time of breast cancer diagnosis in a statewide registry
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137761/1/cncr30674.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137761/2/cncr30674_am.pd
Design of RESILIENCE: a phase 3 trial comparing capecitabine in combination with sorafenib or placebo for treatment of locally advanced or metastatic HER2-negative breast cancer
- …
