37 research outputs found

    Stat3 and c-Myc Genome-Wide Promoter Occupancy in Embryonic Stem Cells

    Get PDF
    Embryonic stem (ES) cell pluripotency is regulated in part by transcription factor (TF) pathways that maintain self-renewal and inhibit differentiation. Stat3 and c-Myc TFs are essential for maintaining mouse ES cell self-renewal. c-Myc, together with Oct4, Sox2, and Klf4, is a reprogramming factor. While previous studies have investigated core transcriptional circuitry in ES cells, other TF pathways that promote ES cell pluripotency have yet to be investigated. Therefore, to further understand ES cell transcriptional networks, we used genome-wide chromatin immunoprecipitation and microarray analysis (ChIP-chip) to map Stat3 and c-Myc binding targets in ES cells. Our results show that Stat3 and c-Myc occupy a significant number of genes whose expression is highly enriched in ES cells. By comparing Stat3 and c-Myc target genes with gene expression data from undifferentiated ES cells and embryoid bodies (EBs), we found that Stat3 binds active and inactive genes in ES cells, while c-Myc binds predominantly active genes. Moreover, the transcriptional states of Stat3 and c-Myc targets are correlated with co-occupancy of pluripotency-related TFs, polycomb group proteins, and active and repressive histone modifications. We also provide evidence that Stat3 targets are differentially expressed in ES cells following removal of LIF, where culture of ES cells in the absence of LIF resulted in downregulation of Stat3 target genes enriched in ES cells, and upregulation of lineage specific Stat3 target genes. Altogether, we reveal transcriptional targets of two key pluripotency-related genes in ES cells – Stat3 and c-Myc, thus providing further insight into the ES cell transcriptional network

    Social, Structural and Behavioral Determinants of Overall Health Status in a Cohort of Homeless and Unstably Housed HIV-Infected Men

    Get PDF
    Background: Previous studies indicate multiple influences on the overall health of HIV-infected persons; however, few assess and rank longitudinal changes in social and structural barriers that are disproportionately found in impoverished populations. We empirically ranked factors that longitudinally impact the overall health status of HIV-infected homeless and unstably housed men. Methods and Findings: Between 2002 and 2008, a cohort of 288 HIV+ homeless and unstably housed men was recruited and followed over time. The population was 60 % non-Caucasian and the median age was 41 years; 67 % of study participants reported recent drug use and 20 % reported recent homelessness. At baseline, the median CD4 cell count was 349 cells/ml and 18 % of eligible persons (CD4,350) took antiretroviral therapy (ART). Marginal structural models were used to estimate the population-level effects of behavioral, social, and structural factors on overall physical and mental health status (measured by the SF-36), and targeted variable importance (tVIM) was used to empirically rank factors by their influence. After adjusting for confounding, and in order of their influence, the three factors with the strongest negative effects on physical health were unmet subsistence needs, Caucasian race, and no reported source of instrumental support. The three factors with the strongest negative effects on mental health were unmet subsistence needs, not having a close friend/confidant, and drug use. ART adherence.90 % ranked 5th for its positive influence on mental health, and viral loa

    Calcium Dependent CAMTA1 in Adult Stem Cell Commitment to a Myocardial Lineage

    Get PDF
    The phenotype of somatic cells has recently been found to be reversible. Direct reprogramming of one cell type into another has been achieved with transduction and over expression of exogenous defined transcription factors emphasizing their role in specifying cell fate. To discover early and novel endogenous transcription factors that may have a role in adult-derived stem cell acquisition of a cardiomyocyte phenotype, mesenchymal stem cells from human and mouse bone marrow and rat liver were co-cultured with neonatal cardiomyocytes as an in vitro cardiogenic microenvironment. Cell-cell communications develop between the two cell types as early as 24 hrs in co-culture and are required for elaboration of a myocardial phenotype in the stem cells 8-16 days later. These intercellular communications are associated with novel Ca(2+) oscillations in the stem cells that are synchronous with the Ca(2+) transients in adjacent cardiomyocytes and are detected in the stem cells as early as 24-48 hrs in co-culture. Early and significant up-regulation of Ca(2+)-dependent effectors, CAMTA1 and RCAN1 ensues before a myocardial program is activated. CAMTA1 loss-of-function minimizes the activation of the cardiac gene program in the stem cells. While the expression of RCAN1 suggests involvement of the well-characterized calcineurin-NFAT pathway as a response to a Ca(2+) signal, the CAMTA1 up-regulated expression as a response to such a signal in the stem cells was unknown. Cell-cell communications between the stem cells and adjacent cardiomyocytes induce Ca(2+) signals that activate a myocardial gene program in the stem cells via a novel and early Ca(2+)-dependent intermediate, up-regulation of CAMTA1

    Introduction

    No full text

    Role of gap junctions during early embryo development

    No full text
    Gap junctional communication plays a central role in the maintenance of cellular homeostasis by allowing the passage of small molecules between adjacent cells. Gap junctions are composed of a family of proteins termed connexins. During preimplantation development several connexin proteins are expressed and assembled into gap junctions in the plasma membrane at compaction but the functional significance of connexin diversity remains controversial. Although, many of the connexin genes have been disrupted using homologous recombination in embryonic stem cells to obtain unique phenotypes, none of these studies has demonstrated a specific role for connexins during preimplantation development in the null mutants. This review surveys evidence for the involvement of gap junctional communication during embryo development highlighting discrepancies in the literature. Although some evidence suggests that gap junctions may be dispensable during preimplantation development this is difficult to envisage particularly for the process of cavitation and the maintenance of homeostasis between the differentiated trophectoderm cells and the pluripotent inner cell mass cells of the blastocyst
    corecore