146 research outputs found

    Uniform stability estimates for the discrete Calderon problems

    Get PDF
    In this article, we focus on the analysis of discrete versions of the Calderon problem in dimension d \geq 3. In particular, our goal is to obtain stability estimates for the discrete Calderon problems that hold uniformly with respect to the discretization parameter. Our approach mimics the one in the continuous setting. Namely, we shall prove discrete Carleman estimates for the discrete Laplace operator. A main difference with the continuous ones is that there, the Carleman parameters cannot be taken arbitrarily large, but should be smaller than some frequency scale depending on the mesh size. Following the by-now classical Complex Geometric Optics (CGO) approach, we can thus derive discrete CGO solutions, but with limited range of parameters. As in the continuous case, we then use these solutions to obtain uniform stability estimates for the discrete Calderon problems.Comment: 38 pages, 2 figure

    Robots, computer algebra and eight connected components

    Full text link
    Answering connectivity queries in semi-algebraic sets is a long-standing and challenging computational issue with applications in robotics, in particular for the analysis of kinematic singularities. One task there is to compute the number of connected components of the complementary of the singularities of the kinematic map. Another task is to design a continuous path joining two given points lying in the same connected component of such a set. In this paper, we push forward the current capabilities of computer algebra to obtain computer-aided proofs of the analysis of the kinematic singularities of various robots used in industry. We first show how to combine mathematical reasoning with easy symbolic computations to study the kinematic singularities of an infinite family (depending on paramaters) modelled by the UR-series produced by the company ``Universal Robots''. Next, we compute roadmaps (which are curves used to answer connectivity queries) for this family of robots. We design an algorithm for ``solving'' positive dimensional polynomial system depending on parameters. The meaning of solving here means partitioning the parameter's space into semi-algebraic components over which the number of connected components of the semi-algebraic set defined by the input system is invariant. Practical experiments confirm our computer-aided proof and show that such an algorithm can already be used to analyze the kinematic singularities of the UR-series family. The number of connected components of the complementary of the kinematic singularities of generic robots in this family is 88

    The SPIRAL2 control system progress towards the commissioning phase

    Get PDF
    MOCOAAB03, http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/mocoaab03.pdfInternational audienceThe commissioning of the first phase of the Spiral2 Radioactive Ion Beams facility at Ganil will soon start, so requiring the control system components to be delivered in time. Yet, parts of the system were validated during preliminary tests performed with ions and deuterons beams at low energy. The control system development results from the collaboration between Ganil, CEA-IRFU, CNRS-IPHC laboratories, using appropriate tools and approach. Based on Epics, the control system follows a classical architecture. At the lowest level, Modbus/TCP protocol is considered as a field bus. Then, equipment are handled by IOCs (soft or VME/VxWorks) with a software standardized interface between IOCs and clients applications on top. This last upper layer consists of Epics standard tools, CSS/BOY user interfaces within the socalled CSSop Spiral2 context suited for operation and, for machine tunings, high level applications implemented by Java programs developed within a Spiral2 framework derived from the open-Xal one. Databases are used for equipment data and alarms archiving, to configure equipment and to manage the machine lattice and beam settings. A global overview of the system is therefore here proposed

    Shape optimization for the generalized Graetz problem

    Get PDF
    We apply shape optimization tools to the generalized Graetz problem which is a convection-diffusion equation. The problem boils down to the optimization of generalized eigen values on a two phases domain. Shape sensitivity analysis is performed with respect to the evolution of the interface between the fluid and solid phase. In particular physical settings, counterexamples where there is no optimal domains are exhibited. Numerical examples of optimal domains with different physical parameters and constraints are presented. Two different numerical methods (level-set and mesh-morphing) are show-cased and compared

    Proposal for new experimental schemes to realize the Avogadro constant

    Get PDF
    We propose two experimental schemes to determine and so to realize the Avogadro constant N_AN\_{A} at the level of 10−7^{-7} or better with a watt balance experiment and a cold atom experiment measuring h/m(X)h/m(X) (where hh is the Planck constant and m(X)m(X) the mass of the atom XX). We give some prospects about achievable uncertainties and we discuss the opportunity to test the existence of possible unknown correction factors for the Josephson effect and quantum Hall effect

    A Small but Efficient Collaboration for the Spiral2 Control System Development

    Get PDF
    http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/tucobab01.pdfThe Spiral2 radioactive ion beam facility to be commissioned in 2014 at Ganil (Caen) is built within international collaborations. This also concerns the control system development shared by three laboratories: Ganil has to coordinate the control and automated systems work packages, CEA/IRFU is in charge of the "injector" (sources and low energy beam lines) and the LLRF, CNRS/IPHC provides the emittancemeters and a beam diagnostics platform. Besides the technology Epics based, this collaboration, although being handled with a few people, nevertheless requires an appropriate and tight organization to reach the objectives given by the project. This contribution describes how, started in 2006, the collaboration for controls has been managed both from the technological point of view and the organizational one, taking into account not only the previous experience, technical background or skill of each partner, but also their existing working practices and "cultural" approaches. A first feedback comes from successful beam tests carried out at Saclay and Grenoble; a next challenge is the migration to operation, Ganil having to run Spiral2 as the other members are moving to new projects

    Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope

    Get PDF
    The ANTARES collaboration has performed a series of {\em in situ} measurements to study the background light for a planned undersea neutrino telescope. Such background can be caused by 40^{40}K decays or by biological activity. We report on measurements at two sites in the Mediterranean Sea at depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were used to measure single counting rates and coincidence rates for pairs of tubes at various distances. The background rate is seen to consist of three components: a constant rate due to 40^{40}K decays, a continuum rate that varies on a time scale of several hours simultaneously over distances up to at least 40~m, and random bursts a few seconds long that are only correlated in time over distances of the order of a meter. A trigger requiring coincidences between nearby photomultiplier tubes should reduce the trigger rate for a neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle Physic

    Amenability of groups and GG-sets

    Full text link
    This text surveys classical and recent results in the field of amenability of groups, from a combinatorial standpoint. It has served as the support of courses at the University of G\"ottingen and the \'Ecole Normale Sup\'erieure. The goals of the text are (1) to be as self-contained as possible, so as to serve as a good introduction for newcomers to the field; (2) to stress the use of combinatorial tools, in collaboration with functional analysis, probability etc., with discrete groups in focus; (3) to consider from the beginning the more general notion of amenable actions; (4) to describe recent classes of examples, and in particular groups acting on Cantor sets and topological full groups
    • 

    corecore