892 research outputs found
The Impact of New Polarization Data from Bonn, Mainz and Jefferson Laboratory on Multipoles
New data on pion-photoproduction off the proton have been included in the
partial wave analyses Bonn-Gatchina and SAID and in the dynamical
coupled-channel approach J\"ulich-Bonn. All reproduce the recent new data well:
the double polarization data for E, G, H, P and T in
from ELSA, the beam asymmetry for and
from Jefferson Laboratory, and the precise new differential cross section and
beam asymmetry data for from MAMI. The new fit
results for the multipoles are compared with predictions not taking into
account the new data. The mutual agreement is improved considerably but still
far from being perfect
Discovery of new TeV supernova remnant shells in the Galactic plane with H.E.S.S
Supernova remnants (SNRs) are prime candidates for efficient particle
acceleration up to the knee in the cosmic ray particle spectrum. In this work
we present a new method for a systematic search for new TeV-emitting SNR shells
in 2864 hours of H.E.S.S. phase I data used for the H.E.S.S. Galactic Plane
Survey. This new method, which correctly identifies the known shell
morphologies of the TeV SNRs covered by the survey, HESS J1731-347, RX
1713.7-3946, RCW 86, and Vela Junior, reveals also the existence of three new
SNR candidates. All three candidates were extensively studied regarding their
morphological, spectral, and multi-wavelength (MWL) properties. HESS J1534-571
was associated with the radio SNR candidate G323.7-1.0, and thus is classified
as an SNR. HESS J1912+101 and HESS J1614-518, on the other hand, do not have
radio or X-ray counterparts that would permit to identify them firmly as SNRs,
and therefore they remain SNR candidates, discovered first at TeV energies as
such. Further MWL follow up observations are needed to confirm that these newly
discovered SNR candidates are indeed SNRs
The {\eta}'-carbon potential at low meson momenta
The production of mesons in coincidence with forward-going
protons has been studied in photon-induced reactions on C and on a
liquid hydrogen (LH) target for incoming photon energies of 1.3-2.6 GeV at
the electron accelerator ELSA. The mesons have been identified
via the decay
registered with the CBELSA/TAPS detector system. Coincident protons have been
identified in the MiniTAPS BaF array at polar angles of . Under these kinematic constraints the
mesons are produced with relatively low kinetic energy (
150 MeV) since the coincident protons take over most of the momentum of the
incident-photon beam. For the C-target this allows the determination of the
real part of the -carbon potential at low meson momenta by
comparing with collision model calculations of the kinetic energy
distribution and excitation function. Fitting the latter data for
mesons going backwards in the center-of-mass system yields a potential depth of
V = (44 16(stat)15(syst)) MeV, consistent with earlier
determinations of the potential depth in inclusive measurements for average
momenta of 1.1 GeV/. Within the experimental
uncertainties, there is no indication of a momentum dependence of the
-carbon potential. The LH data, taken as a reference to check
the data analysis and the model calculations, provide differential and integral
cross sections in good agreement with previous results for
photoproduction off the free proton.Comment: 9 pages, 13 figures. arXiv admin note: text overlap with
arXiv:1608.0607
Photoproduction of eta mesons from the neutron: cross sections and double polarization observable E
Photoproduction of mesons from neutrons} \abstract{Results from
measurements of the photoproduction of mesons from quasifree protons and
neutrons are summarized. The experiments were performed with the CBELSA/TAPS
detector at the electron accelerator ELSA in Bonn using the
decay. A liquid deuterium target was used for the
measurement of total cross sections and angular distributions. The results
confirm earlier measurements from Bonn and the MAMI facility in Mainz about the
existence of a narrow structure in the excitation function of . The current angular distributions show a forward-backward
asymmetry, which was previously not seen, but was predicted by model
calculations including an additional narrow state. Furthermore, data
obtained with a longitudinally polarized, deuterated butanol target and a
circularly polarized photon beam were analyzed to determine the double
polarization observable . Both data sets together were also used to extract
the helicity dependent cross sections and . The
narrow structure in the excitation function of
appears associated with the helicity-1/2 component of the reaction
Characterizing the gamma-ray long-term variability of PKS 2155-304 with H.E.S.S. and Fermi-LAT
Studying the temporal variability of BL Lac objects at the highest energies
provides unique insights into the extreme physical processes occurring in
relativistic jets and in the vicinity of super-massive black holes. To this
end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in
the high (HE, 100 MeV 200 GeV)
gamma-ray domain. Over the course of ~9 yr of H.E.S.S observations the VHE
light curve in the quiescent state is consistent with a log-normal behavior.
The VHE variability in this state is well described by flicker noise
(power-spectral-density index {\ss}_VHE = 1.10 +0.10 -0.13) on time scales
larger than one day. An analysis of 5.5 yr of HE Fermi LAT data gives
consistent results ({\ss}_HE = 1.20 +0.21 -0.23, on time scales larger than 10
days) compatible with the VHE findings. The HE and VHE power spectral densities
show a scale invariance across the probed time ranges. A direct linear
correlation between the VHE and HE fluxes could neither be excluded nor firmly
established. These long-term-variability properties are discussed and compared
to the red noise behavior ({\ss} ~ 2) seen on shorter time scales during
VHE-flaring states. The difference in power spectral noise behavior at VHE
energies during quiescent and flaring states provides evidence that these
states are influenced by different physical processes, while the compatibility
of the HE and VHE long-term results is suggestive of a common physical link as
it might be introduced by an underlying jet-disk connection.Comment: 11 pages, 16 figure
Detection of variable VHE gamma-ray emission from the extra-galactic gamma-ray binary LMC P3
Context. Recently, the high-energy (HE, 0.1-100 GeV) -ray emission
from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered
to be modulated with a 10.3-day period, making it the first extra-galactic
-ray binary.
Aims. This work aims at the detection of very-high-energy (VHE, >100 GeV)
-ray emission and the search for modulation of the VHE signal with the
orbital period of the binary system.
Methods. LMC P3 has been observed with the High Energy Stereoscopic System
(H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has
been folded with the known orbital period of the system in order to test for
variability of the emission. Energy spectra are obtained for the orbit-averaged
data set, and for the orbital phase bin around the VHE maximum.
Results. VHE -ray emission is detected with a statistical
significance of 6.4 . The data clearly show variability which is
phase-locked to the orbital period of the system. Periodicity cannot be deduced
from the H.E.S.S. data set alone. The orbit-averaged luminosity in the
TeV energy range is erg/s. A luminosity of erg/s is reached during 20% of the orbit. HE and VHE
-ray emissions are anti-correlated. LMC P3 is the most luminous
-ray binary known so far.Comment: 5 pages, 3 figures, 1 table, accepted for publication in A&
The polarization observables T, P, and H and their impact on multipoles
Data on the polarization observables T, P, and H for the reaction are reported. Compared to earlier data from other experiments, our
data are more precise and extend the covered range in energy and angle
substantially. The results were extracted from azimuthal asymmetries measured
using a transversely polarized target and linearly polarized photons. The data
were taken at the Bonn electron stretcher accelerator ELSA with the CBELSA/TAPS
detector. Within the Bonn-Gatchina partial wave analysis, the new polarization
data lead to a significant narrowing of the error band for the multipoles for
neutral-pion photoproduction
- …
