122 research outputs found

    Philippa Foot’s ‘Natural Goodness’

    Get PDF
    Philippa Foot, with the help of her friend and colleague Elizabeth Anscombe, discovered that Summa Theologiae, II-II of Thomas Aquinas was a powerful resource in seeking objectivism in ethics. Foot’s aim was to produce an ethics of natural goodness, in which moral evil, for example, came to be seen as a ‘natural defect’ rather than the expression of a taste or preference. This brought her to develop a concrete ethics of virtue with a broad sweep, dealing with the individual and communal needs and goods of human beings, and particularly with their central moral quality of acting for a reason, with a practical rationality. This has helped her to return to an Aristotelian meaning of virtue, as simply one kind of excellence among others

    Self-propelled instrumented deep drilling system

    Get PDF
    An autonomous subsurface drilling device has spaced-apart forward and rearward feet sections coupled to an axial thruster mechanism between them to operate using an inchworm method of mobility. In one embodiment, forward and rearward drill sections are carried on forward and rearward feet sections for drilling into material in the borehole in both forward and rearward directions, to allow the device to maneuver in any direction underground. In another embodiment, a front drill section has a drill head for cutting into the borehole and conveying cuttings through a center spine tube to an on-board depository for the cuttings. The feet sections of the device employ a foot scroll drive unit to provide radial thrust and synchronous motion to the feet for gripping the borehole wall. The axial thrust mechanism has a tandem set of thrusters in which the second thruster is used to provide the thrust needed for drilling, but not walking. A steering mechanism composed of concentric inner and outer eccentric rings provided with the rearward feet section allow small corrections in both direction and magnitude to the drilling direction as drilling commences

    Basic space payload fastener

    Get PDF
    A new basic space fastener has been developed and tested by the GSFC. The purposes of this fastener are to permit assembly and servicing in space by astronauts and/or robots and to facilitate qualification of payloads on Earth prior to launch by saving time and money during the systems integration and component testing and qualification processes. The space fastener is a rework of the basic machine screw such that crossthreading is impossible; it is self-locking and will not work its way out during launch (vibration proof); it will not wear out despite repeated use; it occupies a small foot print which is comparable to its machine screw equivalent, and it provides force and exhibits strength comparable to its machine screw equivalent. Construction is ultra-simple and cost effective and the principle is applicable across the full range of screw sizes ranging from a #10 screw to 2.5 cm (1 in) or more. In this paper, the fastener principles of operation will be discussed along with test results and construction details. The new fastener also has considerable potential in the commercial sector. A few promising applications will be presented

    Regoliths in 3-D

    Get PDF
    A planetary regolith is any layer of fragments, unconsolidated material that may or may not be textually or compositionally altered relative to underlying substrate and occurs on the outer surface of a solar system body. This includes fragmented material from volcanic, sedimentary, and meteoritic infall sources, and derived by any process (e.g. impact and all other endogenic or exogenic processes). Many measurements that can be made from orbit or from Earth-based observations provide information only about the uppermost portions of a regolith and not the underlying substrate(s). Thus an understanding of the formation processes, physical properties, composition, and evolution of planetary regoliths is essential in answering scientific questions posed by the Committee on Planetary and Lunar Exploration (COMPLEX). This paper provides examples of measurements required to answer these critical science questions

    The CAESAR New Frontiers Mission: Comet Surface Sample Acquisition and Preservation

    Get PDF
    NASA recently selected the Comet Astrobiology Exploration Sample Return (CAESAR) mission for Phase A study in the New Frontiers Program. This mission will acquire and return to Earth for laboratory analysis at least 80 g of surface material from the nucleus of comet 67P/Churyumov-Gerasimenko (hereafter 67P). CAESAR will characterize the surface region sampled, preserve the sample in a pristine state, and return evolved volatiles by capturing them in a separate gas reservoir. The system protects both volatile and non-volatile components from contamination or alteration thatwould hamper their scientific analysis. Laboratory analyses of comet samples provide unparalleled knowledge about the presolar history through the initial stages of planet formation to the origin of life

    Curiosity's Sample Analysis at Mars (SAM) Investigation: Overview of Results from the First 120 Sols on Mars

    Get PDF
    During the first 120 sols of Curiosity s landed mission on Mars (8/6/2012 to 12/7/2012) SAM sampled the atmosphere 9 times and an eolian bedform named Rocknest 4 times. The atmospheric experiments utilized SAM s quadrupole mass spectrometer (QMS) and tunable laser spectrometer (TLS) while the solid sample experiments also utilized the gas chromatograph (GC). Although a number of core experiments were pre-programmed and stored in EEProm, a high level SAM scripting language enabled the team to optimize experiments based on prior runs

    Experimental determination of photostability and fluorescence-based detection of PAHs on the Martian surface

    Get PDF
    Even in the absence of any biosphere on Mars, organic molecules, including polycyclic aromatic hydrocarbons (PAHs), are expected on its surface due to delivery by comets and meteorites of extraterrestrial organics synthesized by astrochemistry, or perhaps in situ synthesis in ancient prebiotic chemistry. Any organic compounds exposed to the unfiltered solar ultraviolet spectrum or oxidizing surface conditions would have been readily destroyed, but discoverable caches of Martian organics may remain shielded in the subsurface or within surface rocks. We have studied the stability of three representative polycyclic aromatic hydrocarbons (PAHs) in a Mars chamber, emulating the ultraviolet spectrum of unfiltered sunlight under temperature and pressure conditions of the Martian surface. Fluorescence spectroscopy is used as a sensitive indicator of remaining PAH concentration for laboratory quantification of molecular degradation rates once exposed on the Martian surface. Fluorescence-based instrumentation has also been proposed as an effective surveying method for prebiotic organics on the Martian surface. We find the representative PAHs, anthracene, pyrene, and perylene, to have persistence half-lives once exposed on the Martian surface of between 25 and 60 h of noontime summer UV irradiation, as measured by fluorescence at their peak excitation wavelength. This equates to between 4 and 9.6 sols when the diurnal cycle of UV light intensity on the Martian surface is taken into account, giving a substantial window of opportunity for detection of organic fluorescence before photodegradation. This study thus supports the use of fluorescence-based instrumentation for surveying recently exposed material (such as from cores or drill tailings) for native Martian organic molecules in rover missions

    In-Situ and Experimental Evidence for Acidic Weathering of Rocks and Soils on Mars

    Get PDF
    Experimental data for alteration of synthetic Martian basalts at pH=0-1 indicate that chemical fractionations at low pH are vastly different from those observed during terrestrial weathering. Rock analyses from Gusev crater are well described by the relationships apparent from low pH experimental alteration data. A model for rock surface alteration is developed which indicates that a leached alteration zone is present on rock surfaces at Gusev. This zone is not chemically fractionated to a large degree from the underlying rock interior, indicating that the rock surface alteration process has occurred at low fluid-to-rock ratio. The geochemistry of natural rock surfaces analyzed by APXS is consistent with a mixture between adhering soil/dust and the leached alteration zone. The chemistry of rock surfaces analyzed after brushing with the RAT is largely representative of the leached alteration zone. The chemistry of rock surfaces analyzed after grinding with the RAT is largely representative of the interior of the rock, relatively unaffected by the alteration process occurring at the rock surface. Elemental measurements from the Spirit, Opportunity, Pathfinder and Viking 1 landing sites indicate that soil chemistry from widely separated locations is consistent with the low-pH, low fluid to rock ratio alteration relationships developed for Gusev rocks. Soils are affected principally by mobility of FeO and MgO, consistent with alteration of olivine-bearing basalt and subsequent precipitation of FeO and MgO bearing secondary minerals as the primary control on soil geochemistry

    Mineralogy and chemistry of cobbles at Meridiani Planum, Mars, investigated by the Mars Exploration Rover Opportunity

    Get PDF
    Numerous loose rocks with dimensions of a few centimeters to tens of centimeters and with no obvious physical relationship to outcrop rocks have been observed along the traverse of the Mars Exploration Rover Opportunity. To date, about a dozen of these rocks have been analyzed with Opportunity’s contact instruments, providing information about elemental chemistry (Alpha Particle X‐ray Spectrometer), iron mineralogy and oxidation states (Mössbauer Spectrometer) and texture (Microscopic Imager). These “cobbles” appear to be impact related, and three distinct groups can be identified on the basis of chemistry and mineralogy. The first group comprises bright fragments of the sulfate‐rich bedrock that are compositionally and texturally indistinguishable from outcrop rocks. All other cobbles are dark and are divided into two groups, referred to as the “Barberton group” and the “Arkansas group,” after the first specimen of each that was encountered by Opportunity. Barberton group cobbles are interpreted as meteorites with an overall chemistry and mineralogy consistent with a mesosiderite silicate clast composition. Arkansas group cobbles appear to be related to Meridiani outcrop and contain an additional basaltic component. They have brecciated textures, pointing to an impact‐related origin during which local bedrock and basaltic material were mixed
    corecore