22 research outputs found

    The anterior deltoid???s importance in reverse shoulder arthroplasty: a cadaveric biomechanical study

    No full text
    Background: Frequently, patients who are candidates for reverse shoulder arthroplasty have had prior surgery that may compromise the anterior deltoid muscle. There have been conflicting reports on the necessity of the anterior deltoid thus it is unclear whether a dysfunctional anterior deltoid muscle is a contraindication to reverse shoulder arthroplasty. The purpose of this study was to determine the 3-dimensional (3D) moment arms for all 6 deltoid segments, and determine the biomechanical significance of the anterior deltoid before and after reverse shoulder arthroplasty. Methods: Eight cadaveric shoulders were evaluated with a 6-axis force/torque sensor to assess the direction of rotation and 3D moment arms for all 6 segments of the deltoid both before and after placement of a reverse shoulder prosthesis. The 2 segments of anterior deltoid were unloaded sequentially to determine their functional role. Results: The 3D moment arms of the deltoid were significantly altered by placement of the reverse shoulder prosthesis. The anterior and middle deltoid abduction moment arms significantly increased after placement of the reverse prosthesis (P < .05). Furthermore, the loss of the anterior deltoid resulted in a significant decrease in both abduction and flexion moments (P < .05). Conclusion: The anterior deltoid is important biomechanically for balanced function after a reverse total shoulder arthroplasty. Losing 1 segment of the anterior deltoid may still allow abduction; however, losing both segments of the anterior deltoid may disrupt balanced abduction. Surgeons should be cautious about performing reverse shoulder arthroplasty in patients who do not have a functioning anterior deltoid muscle. Level of Evidence: Basic Science Study, Biomechanics, Cadaver Model. (C) 2013 Journal of Shoulder and Elbow Surgery Board of Trustees.close6

    Supramolecular design of self-assembling nanofibers for cartilage regeneration

    No full text
    Molecular and supramolecular design of bioactive biomaterials could have a significant impact on regenerative medicine. Ideal regenerative therapies should be minimally invasive, and thus the notion of self-assembling biomaterials programmed to transform from injectable liquids to solid bioactive structures in tissue is highly attractive for clinical translation. We report here on a coassembly system of peptide amphiphile (PA) molecules designed to form nanofibers for cartilage regeneration by displaying a high density of binding epitopes to transforming growth factor β-1 (TGFβ-1). Growth factor release studies showed that passive release of TGFβ-1 was slower from PA gels containing the growth factor binding sites. In vitro experiments indicate these materials support the survival and promote the chondrogenic differentiation of human mesenchymal stem cells. We also show that these materials can promote regeneration of articular cartilage in a full thickness chondral defect treated with microfracture in a rabbit model with or even without the addition of exogenous growth factor. These results demonstrate the potential of a completely synthetic bioactive biomaterial as a therapy to promote cartilage regeneration
    corecore