122 research outputs found

    Experimental testing of self-healing ability of soft polymer materials

    Get PDF
    Bioinspired materials that act like living tissues and can repair internal damage by themselves, i.e. self-healing materials, are an active field of research. Here a methodology for experimental testing of self-healing ability of soft polymer materials is described. The methodology is applied to a recently synthesized polyurethane material Smartpol (ADHTECH Smart Polymers & Adhesives S.L., Alicante, Spain). Series of tests showed that the material demonstrated self-healing ability. The tests included the following steps: each Smartpol specimen was cut in halves, then it was put together under compression, and after specified amount of time, it was pulled apart while monitoring the force in contact. The test conditions were intentionally chosen to be non-ideal. These non-idealities simultaneously included: (1) separation time was rather long (minutes and dozens of minutes), (2) there was misalignment of specimen parts when they were put together, (3) contacting surfaces were non-flat, and (4) repeated testing of the same specimens was performed and, therefore, repeated damage was simulated. Despite the above, the recovery of structural integrity (self-healing) of the material was observed which demonstrated the remarkable features of Smartpol. Analysis of the experimental results showed clear correlation between adhesion forces (observed through the values of maximum pull-off force) and the time in contact which is a clear indicator of self-healing ability of material. It is argued that the factors contributing to self-healing of the tested material at macro-scale were high adhesion and strong viscoelasticity. The results of fitting the force relaxation data by means of mathematical model containing multiple exponential terms suggested that the material behaviour may be adequately described by the generalized Maxwell model

    Hierarchical self-entangled carbon nanotube tube networks

    Get PDF
    R.A. gratefully acknowledges partial project funding by the Deutsche Forschungsgemeinschaft (DFG) contract AD183-17-1 as well as in the framework of the GRK 2154 and FOR 1616, and support from the European Comission in the framework of the Graphene FET Flagship. N.M.P. is supported by the European Research Council ERC PoC 2015 SILKENE No. 693670 and by the European Commission H2020 under the Graphene FET Flagship (WP14 “Polymer Composites” No. 696656) and under the FET proactive (“Neurofibres” No. 732344). S.S. acknowledges financial support from SILKENE. This work was partly supported by the Leverhulme Trust project CARBTRIB to S.N.G. We acknowledge financial support by Land Schleswig Holstein within the funding program “Open Access Publikationsfonds”. Furthermore, we thank Heather Cavers for proofreading and correcting the manuscript

    A viscoelastic deadly fluid in carnivorous pitcher plants

    Get PDF
    Background : The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key trapping devices. However, the occurrence of species lacking such epidermal specializations but still effective at trapping insects suggests the possible implication of other mechanisms. Methodology/Principal Findings : Using a combination of insect bioassays, high-speed video and rheological measurements, we show that the digestive fluid of Nepenthes rafflesiana is highly viscoelastic and that this physical property is crucial for the retention of insects in its traps. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements. Conclusions/Significance : This finding challenges the common classification of Nepenthes pitchers as simple passive traps and is of great adaptive significance for these tropical plants, which are often submitted to high rainfalls and variations in fluid concentration. The viscoelastic trap constitutes a cryptic but potentially widespread adaptation of Nepenthes species and could be a homologous trait shared through common ancestry with the sundew (Drosera) flypaper plants. Such large production of a highly viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the plant kingdom and suggests novel applications for pest control

    Surface structure and frictional properties of the skin of the Amazon tree boa Corallus hortulanus (Squamata, Boidae)

    Get PDF
    The legless locomotion of snakes requires specific adaptations of their ventral scales to maintain friction force in different directions. The skin microornamentation of the snake Corallus hortulanus was studied by means of scanning electron microscopy and the friction properties of the skin were tested on substrates of different roughness. Skin samples from various parts of the body (dorsal, lateral, ventral) were compared. Dorsal and lateral scales showed similar, net-like microornamentation and similar friction coefficients. Average friction coefficients for dorsal and lateral scales on the epoxy resin surfaces were 0.331 and 0.323, respectively. In contrast, ventral scales possess ridges running parallel to the longitudinal body axis. They demonstrated a significantly lower friction coefficient compared to both dorsal and lateral scales (0.191 on average). In addition, ventral scales showed frictional anisotropy comparing longitudinal and perpendicular direction of the ridges. This study clearly demonstrates that different skin microstructure is responsible for different frictional properties in different body regions

    Localization and density of phoretic deutonymphs of the mite Uropoda orbicularis (Parasitiformes : Mesostigmata) on Aphodius beetles (Aphodiidae) affect pedicel length

    Get PDF
    The phoretic stage of Uropodina mites is a deutonymph with developed morphological adaptations for dispersal by insects. Phoretic deutonymphs are able to produce a pedicel, a stalk-like temporary attachment structure that connects the mite with the carrier. The aim of our study was to determine whether localization and density of phoretic deutonymphs on the carrier affect pedicel length. The study was conducted on a common phoretic mite-Uropoda orbicularis (Uropodina) and two aphodiid beetles-Aphodius prodromus and Aphodius distinctus. Our results show that pedicel length is influenced by the localization of deutonymphs on the body of the carrier. The longest pedicels are produced by deutonymphs attached to the upper part of elytra, whereas deutonymphs attached to femora and trochanters of the third pair of legs and the apex of elytra construct the shortest pedicels. In general, deutonymphs attached to more exposed parts of the carrier produce longer pedicels, whereas shorter pedicels are produced when deutonymphs are fixed to non-exposed parts of the carrier. A second factor influencing pedicel length is the density of attached deutonymphs. Mean pedicel length and deutonymph densities were highly correlated: higher deutonymph density leads to the formation of longer pedicels. The cause for this correlation is discussed, and we conclude that pedicel length variability can increase successful dispersal

    Contrasting Micro/Nano Architecture on Termite Wings: Two Divergent Strategies for Optimising Success of Colonisation Flights

    Get PDF
    Many termite species typically fly during or shortly after rain periods. Local precipitation will ensure water will be present when establishing a new colony after the initial flight. Here we show how different species of termite utilise two distinct and contrasting strategies for optimising the success of the colonisation flight. Nasutitermes sp. and Microcerotermes sp. fly during rain periods and adopt hydrophobic structuring/‘technologies’ on their wings to contend with a moving canvas of droplets in daylight hours. Schedorhinotermes sp. fly after rain periods (typically at night) and thus do not come into contact with mobile droplets. These termites, in contrast, display hydrophilic structuring on their wings with a small scale roughness which is not dimensionally sufficient to introduce an increase in hydrophobicity. The lack of hydrophobicity allows the termite to be hydrophilicly captured at locations where water may be present in large quantities; sufficient for the initial colonization period. The high wettability of the termite cuticle (Schedorhinotermes sp.) indicates that the membrane has a high surface energy and thus will also have strong attractions with solid particles. To investigate this the termite wings were also interacted with both artificial and natural contaminants in the form of hydrophilic silicon beads of various sizes, 4 µm C18 beads and three differently structured pollens. These were compared to the superhydrophobic surface of the planthopper (Desudaba psittacus) and a native Si wafer surface. The termite cuticle demonstrated higher adhesive interactions with all particles in comparison to those measured on the plant hopper

    Resilin and chitinous cuticle form a composite structure for energy storage in jumping by froghopper insects

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background Many insects jump by storing and releasing energy in elastic structures within their bodies. This allows them to release large amounts of energy in a very short time to jump at very high speeds. The fastest of the insect jumpers, the froghopper, uses a catapult-like elastic mechanism to achieve their jumping prowess in which energy, generated by the slow contraction of muscles, is released suddenly to power rapid and synchronous movements of the hind legs. How is this energy stored? Results The hind coxae of the froghopper are linked to the hinges of the ipsilateral hind wings by pleural arches, complex bow-shaped internal skeletal structures. They are built of chitinous cuticle and the rubber-like protein, resilin, which fluoresces bright blue when illuminated with ultra-violet light. The ventral and posterior end of this fluorescent region forms the thoracic part of the pivot with a hind coxa. No other structures in the thorax or hind legs show this blue fluorescence and it is not found in larvae which do not jump. Stimulating one trochanteral depressor muscle in a pattern that simulates its normal action, results in a distortion and forward movement of the posterior part of a pleural arch by 40 μm, but in natural jumping, the movement is at least 100 μm. Conclusion Calculations showed that the resilin itself could only store 1% to 2% of the energy required for jumping. The stiffer cuticular parts of the pleural arches could, however, easily meet all the energy storage needs. The composite structure therefore, combines the stiffness of the chitinous cuticle with the elasticity of resilin. Muscle contractions bend the chitinous cuticle with little deformation and therefore, store the energy needed for jumping, while the resilin rapidly returns its stored energy and thus restores the body to its original shape after a jump and allows repeated jumping

    Elastic modulus of tree frog adhesive toe pads

    Get PDF
    Previous work using an atomic force microscope in nanoindenter mode indicated that the outer, 10- to 15-μm thick, keratinised layer of tree frog toe pads has a modulus of elasticity equivalent to silicone rubber (5–15 MPa) (Scholz et al. 2009), but gave no information on the physical properties of deeper structures. In this study, micro-indentation is used to measure the stiffness of whole toe pads of the tree frog, Litoria caerulea. We show here that tree frog toe pads are amongst the softest of biological structures (effective elastic modulus 4–25 kPa), and that they exhibit a gradient of stiffness, being stiffest on the outside. This stiffness gradient results from the presence of a dense network of capillaries lying beneath the pad epidermis, which probably has a shock absorbing function. Additionally, we compare the physical properties (elastic modulus, work of adhesion, pull-off force) of the toe pads of immature and adult frogs
    corecore