49 research outputs found

    Processing of the ultra-light syntactic foam material Eccostock® FFP using selective laser sintering

    Get PDF
    Production of custom shaped, low density parts and components has a wide number of industrial applications, but also due to the nature of the material can be challenging [1]. Additive manufacturing forms final parts in a layer by layer process from a stack of 2D sections or slices and allows fabrication of almost any arbitrary 3D shape. Depending on the material and desired pore size, this technique can be used to prepare syntactic foams from open cellular structures as well as from composite materials with a high content of glass microspheres. Eccostock FFP is an off the shelf, epoxy-based composite free-flowing powder. Exposed to the temperatures about 100- 150 °C it cures into the rigid and ultra-light three phase syntactic foam (~ 0.1 g/cc). Material is standardly used for physical support and to provide thermal insulation for delicate electrical components in high vibration environments. In its powder form, it allows material to reach inside densely populated electronic packages and its low shrinkage means that electronic components will not be damaged during the curing procedure. The same characteristics also open the possibility to process this powder using the SLS system and benefit from the design freedom of the additive manufacturing technologies. Selective laser sintering (SLS) is one of the powder bed fusion processes, where parts are built using a laser beam as a heat source inducing fusion between powder particles. Powder is uniformly spread across the building platform and kept heated at a temperature just below the melting and curing point. Interaction with the laser selectively cures the polymer matrix entrapping glass microspheres, while the rest of the powder is unaffected and serves as a support. After each slice, the building platform lowers down a certain distance and a new powder layer is recoated on the surface [2]. In this work we optimised parameters for the processing of the Eccostock FFP powder in the standard SLS machine (EOS Formiga P100). Optimal process temperature and laser energy were defined. Using different sets of parameters we produced compression samples to evaluate mechanical properties of the final parts as well as the influence of the different printing parameters on the part density. We showed that syntactic foams parts can be produced using a relatively low processing temperature (below 70 °C) with short heating and cooling periods and exhibited good dimensional accuracy and shape freedom, making SLS an interesting technology to produce ultra-low density, custom shaped structures for industrial applications. Please click Additional Files below to see the full abstract

    Adding functionality to powder bed fusion materials: Creating magnetic polymers using hybridized hollow carbon nanofibres

    Get PDF
    A method is presented, using Fe3O4 nanoparticles hybridized with hollow carbon nanofibers (Fe3O4NP@CNF) as an example, to add functionality to polymer powders for powder bed fusion with laser beam (PBF/LB-P). There are currently only a small number of polymers that can be processed successfully and reliably by PBF/LB-P. It was proposed that coating PA12 powder, a material that has a good track record in laser sintering, with a small amount (0.1 wt%) of Fe3O4@CNF would provide a new material with additional functionality without affecting the processability of the PA12 powder, since the Fe3O4 is contained within the CNF. Commercial PBF/LB-P PA12 particles were coated with Fe3O4@CNF without altering the morphology of the powder particles. No significant reduction in the PBF/LB-P processing window was observed when processing the resulting polymer nanocomposites, and parts were produced with comparable mechanical properties to the base polymer. Interestingly, magnetic investigations of PBF/LB-P cylinders built in three different orientations, with alignment of the long symmetry axis along the X, Y or Z axes of the build chamber, showed a preferential orientation of the hybridized magnetic fibers along the Z-axes in the composite. This suggests the appealing possibility of tailoring pieces with preferential magnetic orientation. Moreover, no agglomeration or nanoparticle growth was observed after PBF/LB-P. It is proposed that the low-cost method used in this work could be easily applied to other nanoparticles, without creating restrictive processing windows and the time-consuming process to determine them. Thus, a range of powders with additional functionality could be easily created for use in a variety of applications and industries

    3D printed fluidics with embedded analytic functionality for automated reaction optimisation

    Get PDF
    Additive manufacturing or ‘3D printing’ is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis

    Tuneable 3D printed bioreactors for transaminations under continuous-flow

    Get PDF
    A method to efficiently immobilize enzymes on 3D printed continuous-flow devices is presented. Application of these chemically modified devices enables rapid screening of immobilization mechanisms and reaction conditions, simple transfer of optimised conditions into tailored printed microfluidic reactors and development of continuous-flow biocatalytic processes. The bioreactors showed good activity (8-20.5 μmol h⁻¹ mgenz⁻¹) in the kinetic resolution of 1-methylbenzylamine, and very good stability (ca. 100 h under flow)

    The effect of laser remelting on the surface chemistry of Ti6al4V components fabricated by selective laser melting

    Get PDF
    Surface remelting/skin scanning of components is generally performed during the selective laser melting (SLM) process to improve the surface quality of a part. However, the chemical effects of surface remelting are not well understood. In this study, cuboidal parts fabricated with and without laser remelting were characterised using scanning electron microscopy (SEM), surface profilometry and X-ray photoelectron spectrophotometry (XPS). The SEM images showed a low-amplitude undulating pattern was observed on both surfaces. The surface chemistries of the surface remelted/skin scanned (SK) and non-surface remelted/non-skin scanned (NSK) samples were observed to significantly differ in their elemental composition. The thickness of the surface oxide layer of the SK surface was double that of the NSK surface. Also, the contribution of the major alloying elements, including titanium and aluminium, on the surface oxide layer varied for both NSK and SK surfaces. The surface chemistry of the NSK and SK surface was significantly different to a conventionally forged (CF) Ti6Al4V surface. The rate of decrease of oxide with depth was in the order of CF > NSK > SK. Although surface remelting is useful in rendering improved surface quality, its impact on surface chemistry should be carefully considered

    Functionalisation of Ti6Al4V components fabricated using selective laser melting with a bioactive compound

    Get PDF
    Surface modification of an implant with a biomolecule is used to improve its biocompatibility and to reduce post-implant complications. In this study, a novel approach has been used to functionalise phosphonic acid monolayers with a drug. Ti6Al4V components fabricated using selective laser melting (SLM) were functionalised with Paracetamol (a pharmaceutically relevant biomolecule) using phosphonic acid based self-assembled monolayers (SAMs). The attachment, stability of the monolayers on the SLM fabricated surface and functionalisation of SAMs with Paracetamol were studied using X-ray photoelectron spectroscopy (XPS) and surface wettability measurements. The obtained results confirmed that SAMs were stable on the Ti6Al4V surface for over four weeks and then began to desorb from the surface. The reaction used to functionalise the phosphonic acid monolayers with Paracetamol was noted to be successful. Thus, the proposed method has the potential to immobilise drugs/proteins to SAM coated surfaces and improve their biocompatibility and reduce post-implant complications

    Mapping geographical inequalities in access to drinking water and sanitation facilities in low-income and middle-income countries, 2000-17

    Get PDF
    Background: Universal access to safe drinking water and sanitation facilities is an essential human right, recognised in the Sustainable Development Goals as crucial for preventing disease and improving human wellbeing. Comprehensive, high-resolution estimates are important to inform progress towards achieving this goal. We aimed to produce high-resolution geospatial estimates of access to drinking water and sanitation facilities. Methods: We used a Bayesian geostatistical model and data from 600 sources across more than 88 low-income and middle-income countries (LMICs) to estimate access to drinking water and sanitation facilities on continuous continent-wide surfaces from 2000 to 2017, and aggregated results to policy-relevant administrative units. We estimated mutually exclusive and collectively exhaustive subcategories of facilities for drinking water (piped water on or off premises, other improved facilities, unimproved, and surface water) and sanitation facilities (septic or sewer sanitation, other improved, unimproved, and open defecation) with use of ordinal regression. We also estimated the number of diarrhoeal deaths in children younger than 5 years attributed to unsafe facilities and estimated deaths that were averted by increased access to safe facilities in 2017, and analysed geographical inequality in access within LMICs. Findings: Across LMICs, access to both piped water and improved water overall increased between 2000 and 2017, with progress varying spatially. For piped water, the safest water facility type, access increased from 40·0% (95% uncertainty interval [UI] 39·4–40·7) to 50·3% (50·0–50·5), but was lowest in sub-Saharan Africa, where access to piped water was mostly concentrated in urban centres. Access to both sewer or septic sanitation and improved sanitation overall also increased across all LMICs during the study period. For sewer or septic sanitation, access was 46·3% (95% UI 46·1–46·5) in 2017, compared with 28·7% (28·5–29·0) in 2000. Although some units improved access to the safest drinking water or sanitation facilities since 2000, a large absolute number of people continued to not have access in several units with high access to such facilities (>80%) in 2017. More than 253 000 people did not have access to sewer or septic sanitation facilities in the city of Harare, Zimbabwe, despite 88·6% (95% UI 87·2–89·7) access overall. Many units were able to transition from the least safe facilities in 2000 to safe facilities by 2017; for units in which populations primarily practised open defecation in 2000, 686 (95% UI 664–711) of the 1830 (1797–1863) units transitioned to the use of improved sanitation. Geographical disparities in access to improved water across units decreased in 76·1% (95% UI 71·6–80·7) of countries from 2000 to 2017, and in 53·9% (50·6–59·6) of countries for access to improved sanitation, but remained evident subnationally in most countries in 2017. Interpretation: Our estimates, combined with geospatial trends in diarrhoeal burden, identify where efforts to increase access to safe drinking water and sanitation facilities are most needed. By highlighting areas with successful approaches or in need of targeted interventions, our estimates can enable precision public health to effectively progress towards universal access to safe water and sanitation

    Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    BACKGROUND: Measurement of changes in health across locations is useful to compare and contrast changing epidemiological patterns against health system performance and identify specific needs for resource allocation in research, policy development, and programme decision making. Using the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we drew from two widely used summary measures to monitor such changes in population health: disability-adjusted life-years (DALYs) and healthy life expectancy (HALE). We used these measures to track trends and benchmark progress compared with expected trends on the basis of the Socio-demographic Index (SDI). METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2016. We calculated DALYs by summing years of life lost and years of life lived with disability for each location, age group, sex, and year. We estimated HALE using age-specific death rates and years of life lived with disability per capita. We explored how DALYs and HALE differed from expected trends when compared with the SDI: the geometric mean of income per person, educational attainment in the population older than age 15 years, and total fertility rate. FINDINGS: The highest globally observed HALE at birth for both women and men was in Singapore, at 75·2 years (95% uncertainty interval 71·9-78·6) for females and 72·0 years (68·8-75·1) for males. The lowest for females was in the Central African Republic (45·6 years [42·0-49·5]) and for males was in Lesotho (41·5 years [39·0-44·0]). From 1990 to 2016, global HALE increased by an average of 6·24 years (5·97-6·48) for both sexes combined. Global HALE increased by 6·04 years (5·74-6·27) for males and 6·49 years (6·08-6·77) for females, whereas HALE at age 65 years increased by 1·78 years (1·61-1·93) for males and 1·96 years (1·69-2·13) for females. Total global DALYs remained largely unchanged from 1990 to 2016 (-2·3% [-5·9 to 0·9]), with decreases in communicable, maternal, neonatal, and nutritional (CMNN) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). The exemplars, calculated as the five lowest ratios of observed to expected age-standardised DALY rates in 2016, were Nicaragua, Costa Rica, the Maldives, Peru, and Israel. The leading three causes of DALYs globally were ischaemic heart disease, cerebrovascular disease, and lower respiratory infections, comprising 16·1% of all DALYs. Total DALYs and age-standardised DALY rates due to most CMNN causes decreased from 1990 to 2016. Conversely, the total DALY burden rose for most NCDs; however, age-standardised DALY rates due to NCDs declined globally. INTERPRETATION: At a global level, DALYs and HALE continue to show improvements. At the same time, we observe that many populations are facing growing functional health loss. Rising SDI was associated with increases in cumulative years of life lived with disability and decreases in CMNN DALYs offset by increased NCD DALYs. Relative compression of morbidity highlights the importance of continued health interventions, which has changed in most locations in pace with the gross domestic product per person, education, and family planning. The analysis of DALYs and HALE and their relationship to SDI represents a robust framework with which to benchmark location-specific health performance. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform health policies, health system improvement initiatives, targeted prevention efforts, and development assistance for health, including financial and research investments for all countries, regardless of their level of sociodemographic development. The presence of countries that substantially outperform others suggests the need for increased scrutiny for proven examples of best practices, which can help to extend gains, whereas the presence of underperforming countries suggests the need for devotion of extra attention to health systems that need more robust support. FUNDING: Bill & Melinda Gates Foundation

    Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016
    corecore