290 research outputs found

    Cerebrovascular risk factors and their time-dependent effects on stroke survival in the EMMA cohort study

    Get PDF
    To investigate the time-dependent effects of traditional risk factors on functional disability in all-cause mortality post-stroke, we evaluated data from a long-term stroke cohort. Baseline cerebrovascular risk factors (CVRF) and functionality at 1 and 6 months were evaluated in survivors from a prospective stroke cohort using the modified Rankin scale (m-RS), which classifies participants as improvement of disability, unchanged disability (at least moderate), and worsening disability. Cox regression models considering baseline risk factors, medication use, and functionality 6 months after stroke were fitted to identify their time-dependent effects up to 12 years of follow-up. Adjusted hazard ratios (HR) with 95% confidence intervals (CI) are presented. Among 632 survivors (median age 68, 54% male, 71% first-ever episode), age and functional disability (unchanged and worsening) 6 months after ischemic stroke had time-dependent effects on all-cause mortality risk up to 12 years of follow-up. The most impacting risk factors were unchanged (at least moderate) (HR, 2.99; 95%CI: 1.98-4.52) and worsening disability (HR, 2.85; 95%CI: 1.26-6.44), particularly in the first two years after a stroke event (Time 1: ≥6 mo to &lt;2.5 y). Worsening disability also impacted mortality in the period from ≥2.5 to &lt;7.5 years (Time 2) of follow-up (HR, 2.43 (95%CI: 1.03-5.73). Other baseline factors had a fixed high-risk effect on mortality during follow-up. Post-stroke and continuous medication use had a fixed protective effect on mortality. Functional disability was the main contributor with differential risks of mortality up to 12 years of follow-up.</p

    First bromine doped cryogenic implosion at the National Ignition Facility

    Full text link
    We report on the first experiment dedicated to the study of nuclear reactions on dopants in a cryogenic capsule at the National Ignition Facility (NIF). This was accomplished using bromine doping in the inner layers of the CH ablator of a capsule identical to that used in the NIF shot N140520. The capsule was doped with 3×\times1016^{16} bromine atoms. The doped capsule shot, N170730, resulted in a DT yield that was 2.6 times lower than the undoped equivalent. The Radiochemical Analysis of Gaseous Samples (RAGS) system was used to collect and detect 79^{79}Kr atoms resulting from energetic deuteron and proton ion reactions on 79^{79}Br. RAGS was also used to detect 13^{13}N produced dominantly by knock-on deuteron reactions on the 12^{12}C in the ablator. High-energy reaction-in-flight neutrons were detected via the 209^{209}Bi(n,4n)206^{206}Bi reaction, using bismuth activation foils located 50 cm outside of the target capsule. The robustness of the RAGS signals suggest that the use of nuclear reactions on dopants as diagnostics is quite feasible

    Global gene flow releases invasive plants from environmental constraints on genetic diversity

    Get PDF
    When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic diversity underlying adaptation, we used data from a globally distributed demographic research network comprising 35 native and 18 nonnative populations of Plantago lanceolata. Species-specific simulation experiments showed that dispersal would dilute demographic influences on genetic diversity at local scales. Populations in the native European range had strong spatial genetic structure associated with geographic distance and precipitation seasonality. In contrast, nonnative populations had weaker spatial genetic structure that was not associated with environmental gradients but with higher within-population genetic diversity. Our findings show that dispersal caused by repeated, long-distance, human-mediated introductions has allowed invasive plant populations to overcome environmental constraints on genetic diversity, even without strong demographic changes. The impact of invasive plants may, therefore, increase with repeated introductions, highlighting the need to constrain future introductions of species even if they already exist in an area

    Prognostic impact of peritumoral lymphocyte infiltration in soft tissue sarcomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to clarify the prognostic significance of peritumoral lymphocyte infiltration in the capsule of soft tissue sarcomas (STS). Multiple observations in preclinical and clinical studies have shown that the immune system has a role in controlling tumor growth and progression. Prognostic markers in potentially curable STS should guide therapy after surgical resection. The immune status at the time of resection may be important, but the prognostic significance of peritumoral lymphocytes is unknown.</p> <p>Methods</p> <p>Tissue microarrays from 80 patients with STS were constructed from duplicate cores of tissue from the tumor and the peritumoral capsule. Immunohistochemistry was used to evaluate the CD3+, CD4+, CD8+ and CD20+ lymphocytes in the tumor and the peritumoral capsule.</p> <p>Results</p> <p>In univariate analyses, increasing numbers of CD20+ (<it>P </it>= 0.032) peritumoral lymphocytes were associated with a reduced disease free survival (DSS). In multivariate analyses, a high number of CD20+ peritumoral lymphocytes (<it>P </it>= 0.030) in the capsule was an independent negative prognostic factor for DSS. There were no such associations of lymphocyte infiltration in the tumor.</p> <p>Conclusions</p> <p>A high density of CD20+ peritumoral lymphocytes is an independent negative prognostic indicator for patients with STS. Further research is needed to determine whether CD20 cells in the peritumoral capsule of STS may promote tumor invasion in the surrounding tissue and increase the metastatic potential.</p

    Effects of rare kidney diseases on kidney failure: a longitudinal analysis of the UK National Registry of Rare Kidney Diseases (RaDaR) cohort

    Get PDF
    \ua9 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Individuals with rare kidney diseases account for 5–10% of people with chronic kidney disease, but constitute more than 25% of patients receiving kidney replacement therapy. The National Registry of Rare Kidney Diseases (RaDaR) gathers longitudinal data from patients with these conditions, which we used to study disease progression and outcomes of death and kidney failure. Methods: People aged 0–96 years living with 28 types of rare kidney diseases were recruited from 108 UK renal care facilities. The primary outcomes were cumulative incidence of mortality and kidney failure in individuals with rare kidney diseases, which were calculated and compared with that of unselected patients with chronic kidney disease. Cumulative incidence and Kaplan–Meier survival estimates were calculated for the following outcomes: median age at kidney failure; median age at death; time from start of dialysis to death; and time from diagnosis to estimated glomerular filtration rate (eGFR) thresholds, allowing calculation of time from last eGFR of 75 mL/min per 1\ub773 m2 or more to first eGFR of less than 30 mL/min per 1\ub773 m2 (the therapeutic trial window). Findings: Between Jan 18, 2010, and July 25, 2022, 27 285 participants were recruited to RaDaR. Median follow-up time from diagnosis was 9\ub76 years (IQR 5\ub79–16\ub77). RaDaR participants had significantly higher 5-year cumulative incidence of kidney failure than 2\ub781 million UK patients with all-cause chronic kidney disease (28% vs 1%; p&lt;0\ub70001), but better survival rates (standardised mortality ratio 0\ub742 [95% CI 0\ub732–0\ub752]; p&lt;0\ub70001). Median age at kidney failure, median age at death, time from start of dialysis to death, time from diagnosis to eGFR thresholds, and therapeutic trial window all varied substantially between rare diseases. Interpretation: Patients with rare kidney diseases differ from the general population of individuals with chronic kidney disease: they have higher 5-year rates of kidney failure but higher survival than other patients with chronic kidney disease stages 3–5, and so are over-represented in the cohort of patients requiring kidney replacement therapy. Addressing unmet therapeutic need for patients with rare kidney diseases could have a large beneficial effect on long-term kidney replacement therapy demand. Funding: RaDaR is funded by the Medical Research Council, Kidney Research UK, Kidney Care UK, and the Polycystic Kidney Disease Charity
    corecore