430 research outputs found

    The decay of quadrupole-octupole 11^- states in 40^{40}Ca and 140^{140}Ce

    Full text link
    Background: Two-phonon excitations originating from the coupling of two collective one-phonon states are of great interest in nuclear structure physics. One possibility to generate low-lying E1E1 excitations is the coupling of quadrupole and octupole phonons. Purpose: In this work, the γ\gamma-decay behavior of candidates for the (21+31)1(2_1^+\otimes 3_1^-)_{1^-} state in the doubly-magic nucleus 40^{40}Ca and in the heavier and semi-magic nucleus 140^{140}Ce is investigated. Methods: (γ,γ)(\vec{\gamma},\gamma') experiments have been carried out at the High Intensity γ\gamma-ray Source (HIγ{\gamma}S) facility in combination with the high-efficiency γ\gamma-ray spectroscopy setup γ3\gamma^3 consisting of HPGe and LaBr3_3 detectors. The setup enables the acquisition of γ\gamma-γ\gamma coincidence data and, hence, the detection of direct decay paths. Results: In addition to the known ground-state decays, for 40^{40}Ca the decay into the 313^-_1 state was observed, while for 140^{140}Ce the direct decays into the 21+2^+_1 and the 02+0^+_2 state were detected. The experimentally deduced transition strengths and excitation energies are compared to theoretical calculations in the framework of EDF theory plus QPM approach and systematically analyzed for N=82N=82 isotones. In addition, negative parities for two J=1J=1 states in 44^{44}Ca were deduced simultaneously. Conclusions: The experimental findings together with the theoretical calculations support the two-phonon character of the 111^-_1 excitation in the light-to-medium-mass nucleus 40^{40}Ca as well as in the stable even-even N=82N=82 nuclei.Comment: 11 pages, 6 figures, as accepted in Phys. Rev.

    Cerebrovascular risk factors and their time-dependent effects on stroke survival in the EMMA cohort study

    Get PDF
    To investigate the time-dependent effects of traditional risk factors on functional disability in all-cause mortality post-stroke, we evaluated data from a long-term stroke cohort. Baseline cerebrovascular risk factors (CVRF) and functionality at 1 and 6 months were evaluated in survivors from a prospective stroke cohort using the modified Rankin scale (m-RS), which classifies participants as improvement of disability, unchanged disability (at least moderate), and worsening disability. Cox regression models considering baseline risk factors, medication use, and functionality 6 months after stroke were fitted to identify their time-dependent effects up to 12 years of follow-up. Adjusted hazard ratios (HR) with 95% confidence intervals (CI) are presented. Among 632 survivors (median age 68, 54% male, 71% first-ever episode), age and functional disability (unchanged and worsening) 6 months after ischemic stroke had time-dependent effects on all-cause mortality risk up to 12 years of follow-up. The most impacting risk factors were unchanged (at least moderate) (HR, 2.99; 95%CI: 1.98-4.52) and worsening disability (HR, 2.85; 95%CI: 1.26-6.44), particularly in the first two years after a stroke event (Time 1: ≥6 mo to &lt;2.5 y). Worsening disability also impacted mortality in the period from ≥2.5 to &lt;7.5 years (Time 2) of follow-up (HR, 2.43 (95%CI: 1.03-5.73). Other baseline factors had a fixed high-risk effect on mortality during follow-up. Post-stroke and continuous medication use had a fixed protective effect on mortality. Functional disability was the main contributor with differential risks of mortality up to 12 years of follow-up.</p

    Does Seed Sanitization Affect the Plant Rhizosphere Microbiome and Its Ability to Compete with the Human Associated Pathogen, E. coli on Salad Crops?

    Get PDF
    Cultivation of crops in controlled environmental agricultural systems may limit microbial colonization and reduce diversity of the microbial communities. Practices like seed and growth medium sanitization may further impact microbial communities in the mature plant and the plants capacity to limit the growth of pathogens through competition. As humans expand their travels to space, understanding plant growth, health, and development in closed environments will be critical to the success of producing a safe, supplemental food source for astronauts. To determine the persistence of a potential human pathogen in plant growth and development, sanitized and unsanitized seeds from, mizuna (Brassica rapa var japonica) and red romaine lettuce (Lactuca sativa cultivar Outredgeous), were inoculated with Escherichia coli, ATCC 21445, germinated under simulated International Space Station (ISS) environmental conditions and harvested every 7 days until maturity. The persistence of E. coli in the rhizosphere was determined by plating on selective media, real time PCR (Polymerase Chain Reaction) and community sequencing of the rhizosphere communities. E. coli was detected in the crops roots and leaves for several weeks post germination. At day 28, plants from sanitized seeds had significantly higher counts of E. coli on the roots than those from unsanitized seeds. E. coli was also detected on a few uninoculated plants indicating airborne cross contamination among plants in the same growth chamber and suggesting an influence of the natural microbiome on human pathogen survival and persistence in leafy greens. Sequencing analysis revealed variations in composition and diversity between the communities. Understanding the microbial community of the rhizospheric microbiome is only the first step in determining the relationships between plants. Additional studies to include genotypic and phenotypic variations in the plants should be considered to determine if the natural microbes in the rhizosphere may contribute to the health and therefore, safety of the edible plants

    The Effect of Hospital and Surgeon Volume on Racial Differences in Recurrence-Free Survival After Radical Prostatectomy

    Get PDF
    This study investigates associations between hospital and surgeon volume, and racial differences in recurrence after surgery for prostate cancer

    Global gene flow releases invasive plants from environmental constraints on genetic diversity

    Get PDF
    When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic diversity underlying adaptation, we used data from a globally distributed demographic research network comprising 35 native and 18 nonnative populations of Plantago lanceolata. Species-specific simulation experiments showed that dispersal would dilute demographic influences on genetic diversity at local scales. Populations in the native European range had strong spatial genetic structure associated with geographic distance and precipitation seasonality. In contrast, nonnative populations had weaker spatial genetic structure that was not associated with environmental gradients but with higher within-population genetic diversity. Our findings show that dispersal caused by repeated, long-distance, human-mediated introductions has allowed invasive plant populations to overcome environmental constraints on genetic diversity, even without strong demographic changes. The impact of invasive plants may, therefore, increase with repeated introductions, highlighting the need to constrain future introductions of species even if they already exist in an area

    First bromine doped cryogenic implosion at the National Ignition Facility

    Full text link
    We report on the first experiment dedicated to the study of nuclear reactions on dopants in a cryogenic capsule at the National Ignition Facility (NIF). This was accomplished using bromine doping in the inner layers of the CH ablator of a capsule identical to that used in the NIF shot N140520. The capsule was doped with 3×\times1016^{16} bromine atoms. The doped capsule shot, N170730, resulted in a DT yield that was 2.6 times lower than the undoped equivalent. The Radiochemical Analysis of Gaseous Samples (RAGS) system was used to collect and detect 79^{79}Kr atoms resulting from energetic deuteron and proton ion reactions on 79^{79}Br. RAGS was also used to detect 13^{13}N produced dominantly by knock-on deuteron reactions on the 12^{12}C in the ablator. High-energy reaction-in-flight neutrons were detected via the 209^{209}Bi(n,4n)206^{206}Bi reaction, using bismuth activation foils located 50 cm outside of the target capsule. The robustness of the RAGS signals suggest that the use of nuclear reactions on dopants as diagnostics is quite feasible
    corecore