22 research outputs found

    Suppression in Pb-Pb Collisions at the LHC.

    Get PDF
    The production of the ψ(2S) charmonium state was measured with ALICE in Pb-Pb collisions at sqrt[s_{NN}]=5.02  TeV, in the dimuon decay channel. A significant signal was observed for the first time at LHC energies down to zero transverse momentum, at forward rapidity (2.5<y<4). The measurement of the ratio of the inclusive production cross sections of the ψ(2S) and J/ψ resonances is reported as a function of the centrality of the collisions and of transverse momentum, in the region p_{T}<12  GeV/c. The results are compared with the corresponding measurements in pp collisions, by forming the double ratio [σ^{ψ(2S)}/σ^{J/ψ}]_{Pb-Pb}/[σ^{ψ(2S)}/σ^{J/ψ}]_{pp}. It is found that in Pb-Pb collisions the ψ(2S) is suppressed by a factor of ∌2 with respect to the J/ψ. The ψ(2S) nuclear modification factor R_{AA} was also obtained as a function of both centrality and p_{T}. The results show that the ψ(2S) resonance yield is strongly suppressed in Pb-Pb collisions, by a factor of up to ∌3 with respect to pp. Comparisons of cross section ratios with previous Super Proton Synchrotron findings by the NA50 experiment and of R_{AA} with higher-p_{T} results at LHC energy are also reported. These results and the corresponding comparisons with calculations of transport and statistical models address questions on the presence and properties of charmonium states in the quark-gluon plasma formed in nuclear collisions at the LHC

    Freeze-out radii extracted from three-pion cumulants in pp, p-Pb and Pb-Pb collisions at the LHC

    No full text

    Coherent photoproduction of rho(0) vector mesons in ultra-peripheral Pb-Pb collisions at root s(NN)=5.02 TeV

    No full text

    Measurement of nuclear effects on psi(2S) production in p-Pb collisions at root s(NN)=8:16 TeV

    No full text

    Inclusive J/psi production at midrapidity in pp collisions at root s=13 Tev

    No full text

    Measurement of the Lifetime and <math display="inline"><mi mathvariant="normal">Λ</mi></math> Separation Energy of <math display="inline"><mmultiscripts><mrow><mi mathvariant="normal">H</mi></mrow><mprescripts/><mrow><mi mathvariant="normal">Λ</mi></mrow><mn>3</mn></mmultiscripts></math>

    No full text
    International audienceThe most precise measurements to date of the HΛ3 lifetime τ and Λ separation energy BΛ are obtained using the data sample of Pb-Pb collisions at sNN=5.02  TeV collected by ALICE at the LHC. The HΛ3 is reconstructed via its charged two-body mesonic decay channel (HΛ3→He3+π- and the charge-conjugate process). The measured values τ=[253±11(stat)±6(syst)]  ps and BΛ=[102±63(stat)±67(syst)]  keV are compatible with predictions from effective field theories and confirm that the HΛ3 structure is consistent with a weakly bound system

    Constraining hadronization mechanisms with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msubsup><mml:mrow><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">c</mml:mi></mml:mrow><mml:mrow><mml:mo linebreak="badbreak" linebreakstyle="after">+</mml:mo></mml:mrow></mml:msubsup><mml:mo stretchy="false">/</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="normal">D</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:math> production ratios in Pb–Pb collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.svg"><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">NN</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>5.02</mml:mn></mml:math> TeV

    Get PDF
    The production of prompt Λc+ baryons at midrapidity (|y|<0.5) was measured in central (0–10%) and mid-central (30–50%) Pb–Pb collisions at the center-of-mass energy per nucleon–nucleon pair sNN=5.02 TeV with the ALICE detector. The results are more precise, more differential in centrality, and reach much lower transverse momentum (pT=1 GeV/c) with respect to previous measurements performed by the ALICE, STAR, and CMS Collaborations in nucleus–nucleus collisions, allowing for an extrapolation down to pT=0. The pT-differential Λc+/D0 ratio is enhanced with respect to the pp measurement for 4<pT<8 GeV/c by 3.7 standard deviations (σ), while the pT-integrated ratios are compatible within 1σ. The observed trend is similar to that observed in the strange sector for the Λ/KS0 ratio. Model calculations including coalescence or statistical hadronization for charm-hadron formation are compared with the data

    Multiplicity dependence of charged-particle production in pp, p–Pb, Xe–Xe and Pb–Pb collisions at the LHC

    Get PDF
    Multiplicity (Nch) distributions and transverse momentum (pT) spectra of inclusive primary charged particles in the kinematic range of |η|<0.8 and 0.15 GeV/c<pT<10 GeV/c are reported for pp, p–Pb, Xe–Xe and Pb–Pb collisions at centre-of-mass energies per nucleon pair ranging from sNN=2.76 TeV up to 13 TeV. A sequential two-dimensional unfolding procedure is used to extract the correlation between the transverse momentum of primary charged particles and the charged-particle multiplicity of the corresponding collision. This correlation sharply characterises important features of the final state of a collision and, therefore, can be used as a stringent test of theoretical models. The multiplicity distributions as well as the mean and standard deviation derived from the pT spectra are compared to state-of-the-art model predictions. Providing these fundamental observables of bulk particle production consistently across a wide range of collision energies and system sizes can serve as an important input for tuning Monte Carlo event generators

    Enhanced Deuteron Coalescence Probability in Jets

    No full text
    International audienceThe transverse-momentum (pT) spectra and coalescence parameters B2 of (anti)deuterons are measured in p-p collisions at s=13  TeV for the first time in and out of jets. In this measurement, the direction of the leading particle with the highest pT in the event (pTlead&gt;5  GeV/c) is used as an approximation for the jet axis. The event is consequently divided into three azimuthal regions, and the jet signal is obtained as the difference between the toward region, that contains jet fragmentation products in addition to the underlying event (UE), and the transverse region, which is dominated by the UE. The coalescence parameter in the jet is found to be approximately a factor of 10 larger than that in the underlying event. This experimental observation is consistent with the coalescence picture and can be attributed to the smaller average phase-space distance between nucleons in the jet cone as compared with the underlying event. The results presented in this Letter are compared to predictions from a simple nucleon coalescence model, where the phase-space distributions of nucleons are generated using pythia8 with the Monash 2013 tuning, and to predictions from a deuteron production model based on ordinary nuclear reactions with parametrized energy-dependent cross sections tuned on data. The latter model is implemented in pythia8.3. Both models reproduce the observed large difference between in-jet and out-of-jet coalescence parameters, although the almost flat trend of the B2Jet is not reproduced by the models, which instead give a decreasing trend

    Jet-associated deuteron production in pp collisions at s=13 TeV

    No full text
    Deuteron production in high-energy collisions is sensitive to the space–time evolution of the collision system, and is typically described by a coalescence mechanism. For the first time, we present results on jet-associated deuteron production in pp collisions at s=13 TeV, providing an opportunity to test the established picture for deuteron production in events with a hard scattering. Using a trigger particle with high transverse-momentum (pT>5 GeV/c) as a proxy for the presence of a jet at midrapidity, we observe a measurable population of deuterons being produced around the jet proxy. The associated deuteron yield measured in a narrow angular range around the trigger particle differs by 2.4–4.8 standard deviations from the uncorrelated background. The data are described by PYTHIA model calculations featuring baryon coalescence
    corecore