60 research outputs found

    A risk score to predict type 2 diabetes mellitus in an elderly spanish mediterranean population at high cardiovascular risk.

    Get PDF
    Introduction: To develop and test a diabetes risk score to predict incident diabetes in an elderly Spanish Mediterranean population at high cardiovascular risk. Materials and Methods: A diabetes risk score was derived from a subset of 1381 nondiabetic individuals from three centres of the PREDIMED study (derivation sample). Multivariate Cox regression model ß-coefficients were used to weigh each risk factor. PREDIMED-personal Score included body-mass-index, smoking status, family history of type 2 diabetes, alcohol consumption and hypertension as categorical variables; PREDIMED-clinical Score included also high blood glucose. We tested the predictive capability of these scores in the DE-PLAN-CAT cohort (validation sample). The discrimination of Finnish Diabetes Risk Score (FINDRISC), German Diabetes Risk Score (GDRS) and our scores was assessed with the area under curve (AUC). Results: The PREDIMED-clinical Score varied from 0 to 14 points. In the subset of the PREDIMED study, 155 individuals developed diabetes during the 4.75-years follow-up. The PREDIMED-clinical score at a cutoff of $6 had sensitivity of 72.2%, and specificity of 72.5%, whereas AUC was 0.78. The AUC of the PREDIMED-clinical Score was 0.66 in the validation sample (sensitivity = 85.4%; specificity = 26.6%), and was significantly higher than the FINDRISC and the GDRS in both the derivation and validation samples. Discussion: We identified classical risk factors for diabetes and developed the PREDIMED-clinical Score to determine those individuals at high risk of developing diabetes in elderly individuals at high cardiovascular risk. The predictive capability of the PREDIMED-clinical Score was significantly higher than the FINDRISC and GDRS, and also used fewer items in the questionnaire

    An analysis of the comorbidity between children’s depression and aggression symptoms: self-esteem and oppositional misbehavior as mediators.

    Get PDF
    Children with dysphoria symptoms have an increased risk of aggression problems. However, previous research has found that when the confounding effect of other depression characteristics, such as self-esteem and oppositional misbehavior, is taken into account, levels of aggression problems tend to be reduced to a great extent. This observation prompts questions as to the mediating effect that self-esteem and oppositional misbehavior may have on aggression problems. In this study, a sample of 1774 school children from the general population (49.7% boys), ranging in age from 7 to 12 years, was examined to test this mediating model using Structural Equation Models. Two self-reports were used to evaluate symptoms: The Children Depression Inventory (CDI), and the Physical and Verbal Aggression Scale. The results showed significant mediating effects through two paths, namely from dysphoria to physical aggression via oppositional misbehavior, and from dysphoria to verbal aggression via self-esteem and oppositional misbehavior. The mediational model was invariant by gender. For both gender, oppositional misbehavior was the strongest mediator of the relationship between aggression and depression. The implications for understanding the comorbidity of depression and aggression and the prevention of symptoms based on potential mediators are discussed.2020-2

    Large Dzyaloshinskii-Moriya interaction induced by chemisorbed oxygen on a ferromagnet surface

    Get PDF
    The Dzyaloshinskii-Moriya interaction (DMI) is an antisymmetric exchange interaction that stabilizes chiral spin textures. It is induced by inversion symmetry breaking in noncentrosymmetric lattices or at interfaces. Recently, interfacial DMI has been found in magnetic layers adjacent to transition metals due to the spin-orbit coupling and at interfaces with graphene due to the Rashba effect. We report direct observation of strong DMI induced by chemisorption of oxygen on a ferromagnetic layer at room temperature. The sign of this DMI and its unexpectedly large magnitude-despite the low atomic number of oxygen-are derived by examining the oxygen coverage-dependent evolution of magnetic chirality. We find that DMI at the oxygen/ferromagnet interface is comparable to those at ferromagnet/transition metal interfaces; it has enabled direct tailoring of skyrmion's winding number at room temperature via oxygen chemisorption. This result extends the understanding of the DMI, opening up opportunities for the chemisorption-related design of spin-orbitronic devices

    Formation of a magnetite/hematite epitaxial bilayer generated with low energy ion bombardment

    Get PDF
    We have used a low-energy ion bombardment to fabricate an epitaxial single-crystalline magnetite/hematite bilayer grown on Au(111). This non-conventional fabrication method involves the transformation of the upper layers of a single-crystalline hematite thin film to single-crystalline magnetite, a process driven by the preferential sputtering of oxygen atoms and favoured by the good structural matching of both phases. We show the reversibility of the transformation between hematite and magnetite, always keeping the epitaxial and single- crystalline character of the films. The magnetic characterization of the bilayer grown using this method shows that the magnetic response is mainly determined by the magnetite thin film, exhibiting a high coercivity. Published by AIP Publishing

    Highly Bi-doped Cu thin films with large spin-mixing conductance

    Get PDF
    The spin Hall effect (SHE) provides an efficient tool for the production of pure spin currents, essentially for the next generation of spintronics devices. Giant SHE has been reported in Cu doped with 0.5% Bi grown by sputtering, and larger values are predicted for larger Bi doping. In this work, we demonstrate the possibility of doping Cu with up to 10% of Bi atoms without evidence of Bi surface segregation or cluster formation. In addition, YIG/BiCu structures have been grown, showing a spin mixing conductance larger that the one shown by similar Pt/YIG structures, reflecting the potentiality of these newmaterials

    Physical Delithiation of Epitaxial LiCoO2 Battery Cathodes as a Platform for Surface Electronic Structure Investigation

    Full text link
    We report a novel delithiation process for epitaxial thin films of LiCoO2(001) cathodes using only physical methods, based on ion sputtering and annealing cycles. Preferential Li sputtering followed by annealing produces a surface layer with a Li molar fraction in the range 0.5 < x < 1, characterized by good crystalline quality. This delithiation procedure allows the unambiguous identification of the effects of Li extraction without chemical byproducts and experimental complications caused by electrolyte interaction with the LiCoO2 surface. An analysis by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) provides a detailed description of the delithiation process and the role of O and Co atoms in charge compensation. We observe the simultaneous formation of Co4+ ions and of holes localized near O atoms upon Li removal, while the surface shows a (2 × 1) reconstruction. The delithiation method described here can be applied to other crystalline battery elements and provide information on their properties that is otherwise difficult to obtainThis work was supported by the Spanish MICINN (grant nos. PID2021-123295NB-I00 and PID2020-117024GB-C43), MAT2017-83722-R, “María de Maeztu” Programme for Units of Excellence in R&D (CEX2018-000805-M), within the framework of UE M-ERA.NET 2018 program under StressLIC Project (grant no. PCI2019-103594) and by the Comunidad Autónoma de Madrid (contract no. PEJD-2019- PRE/IND-15769 and S2108-NMT4321). The authors acknowledge Elettra Sincrotrone Trieste for providing access to its synchrotron radiation facilities. They thank Ignacio Carabias from the Diffraction Unit CAI UCM for his experimental support and helpful comments. The research leading to this result has been supported by the project CALIPSOplus under Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. M.J., P.M., I.P., and F.B. acknowledge funding from EUROFEL (RoadMap Esfri). The work at the University of Maryland was supported by ONR MURI (Award No. N00014-17-1-2661). The work at Sandia National Laboratories was supported by the Laboratory-Directed Research and Development (LDRD) Program and the DOE Basic Energy Sciences Award number DE-SC0021070. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA 000352

    Follow-Up Study Confirms the Presence of Gastric Cancer DNA Methylation Hallmarks in High-Risk Precursor Lesions

    Get PDF
    Intestinal metaplasia confers an increased risk of progression to gastric cancer. However, some intestinal metaplasia patients do not develop cancer. The development of robust molecular biomarkers to stratify patients with advanced gastric precursor lesions at risk of cancer progression will contribute to guiding programs for prevention. Starting from a genome-wide methylation study, we have simplified the detection method regarding candidate-methylation tests to improve their applicability in the clinical environment. We identified CpG methylation at the ZNF793 and RPRM promoters as a common event in intestinal metaplasia and intestinal forms of gastric cancer. Furthermore, we also showed that Helicobacter pylori infection influences DNA methylation in early precursor lesions but not in intestinal metaplasia, suggesting that therapeutic strategies to prevent epigenome reprogramming toward a cancer signature need to be adopted early in the precursor cascade. To adopt prevention strategies in gastric cancer, it is imperative to develop robust biomarkers with acceptable costs and feasibility in clinical practice to stratified populations according to risk scores. With this aim, we applied an unbiased genome-wide CpG methylation approach to a discovery cohort composed of gastric cancer (n = 24), and non-malignant precursor lesions (n = 64). Then, candidate-methylation approaches were performed in a validation cohort of precursor lesions obtained from an observational longitudinal study (n = 264), with a 12-year follow-up to identify repression or progression cases. H. pylori stratification and histology were considered to determine their influence on the methylation dynamics. As a result, we ascertained that intestinal metaplasia partially recapitulates patterns of aberrant methylation of intestinal type of gastric cancer, independently of the H. pylori status. Two epigenetically regulated genes in cancer, RPRM and ZNF793, consistently showed increased methylation in intestinal metaplasia with respect to earlier precursor lesions. In summary, our result supports the need to investigate the practical utilities of the quantification of DNA methylation in candidate genes as a marker for disease progression. In addition, the H. pylori-dependent methylation in intestinal metaplasia suggests that pharmacological treatments aimed at H. pylori eradication in the late stages of precursor lesions do not prevent epigenome reprogramming toward a cancer signature

    Role of targeted therapies in rheumatic patients on COVID-19 outcomes: results from the COVIDSER study

    Get PDF
    Objectives: To analyse the effect of targeted therapies, either biological (b) disease-modifying antirheumatic drugs (DMARDs), targeted synthetic (ts) DMARDs and other factors (demographics, comorbidities or COVID-19 symptoms) on the risk of COVID-19 related hospitalisation in patients with inflammatory rheumatic diseases. Methods: The COVIDSER study is an observational cohort including 7782 patients with inflammatory rheumatic diseases. Multivariable logistic regression was used to estimate ORs and 95% CIs of hospitalisation. Antirheumatic medication taken immediately prior to infection, demographic characteristics, rheumatic disease diagnosis, comorbidities and COVID-19 symptoms were analysed. Results: A total of 426 cases of symptomatic COVID-19 from 1 March 2020 to 13 April 2021 were included in the analyses: 106 (24.9%) were hospitalised and 19 (4.4%) died. In multivariate-adjusted models, bDMARDs and tsDMARDs in combination were not associated with hospitalisation compared with conventional synthetic DMARDs (OR 0.55, 95% CI 0.24 to 1.25 of b/tsDMARDs, p=0.15). Tumour necrosis factor inhibitors (TNF-i) were associated with a reduced likelihood of hospitalisation (OR 0.32, 95% CI 0.12 to 0.82, p=0.018), whereas rituximab showed a tendency to an increased risk of hospitalisation (OR 4.85, 95% CI 0.86 to 27.2). Glucocorticoid use was not associated with hospitalisation (OR 1.69, 95% CI 0.81 to 3.55). A mix of sociodemographic factors, comorbidities and COVID-19 symptoms contribute to patients' hospitalisation. Conclusions: The use of targeted therapies as a group is not associated with COVID-19 severity, except for rituximab, which shows a trend towards an increased risk of hospitalisation, while TNF-i was associated with decreased odds of hospitalisation in patients with rheumatic disease. Other factors like age, male gender, comorbidities and COVID-19 symptoms do play a role.This Project has been financed by Bristol-Myers Squibb, Galapagos Biopharma Spain SLU, Gebro Pharma, Roche Farma and Sanofi Aventis
    corecore