199 research outputs found

    Inductive logic programming applied for knowledge representation in computer music/ Programação lógica indutiva aplicada para representação do conhecimento em música computacional

    Get PDF
     In Computer Music, the knowledge representation process is an essential element for the development of systems. Methods have been applied to provide the computer with the ability to generate conclusions based on previously established experience and definitions. In this sense, Inductive Logic Programming presents itself as a research field that incorporates concepts of Logic Programming and Machine Learning, its declarative character allows musical knowledge to be presented to non-specialist users in a naturally understandable way. The present work performs a systematic review based on approaches that use Inductive Logic Programming in the representation of musical knowledge. Questions that these studies seek to address were raised, as well as identifying characteristic aspects related to their application

    Screening of Strongyloides infection using an ELISA test in transplant candidates

    Get PDF
    OBJECTIVES: Hyperinfection or disseminated strongyloidiasis has been frequently reported after transplants and is related to high mortality. This study aimed to screen for strongyloidiasis using serological diagnoses in transplant candidates. METHODS: An ELISA test was performed with filariform larvae of Strongyloides venezuelensis as a source of antigen. RESULTS: In the serum from transplant candidates, anti-Strongyloides IgG antibodies were detected in 35/150 (23.3%) samples by soluble fractions in phosphate buffered saline (PBS), 31/150 (20.7%) samples by soluble fractions in Tris-HCl, 27/150 (18.0%) samples by membrane fractions in PBS and 22/150 (14.7%) samples by membrane fractions in Tris-HCl. CONCLUSIONS: The present results suggest the ELISA test, ideally using soluble fractions of filariform larvae S. venezuelensis in PBS, as an additional strategy for the diagnosis of strongyloidiasis in transplant candidates

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Growth of CuS platelet single crystals by the high-temperature solution growth technique

    No full text
    Abstract Millimeter size CuS single crystals with a dark indigo blue color and a plate hexagonal shape have been successfully grown by the hightemperature solution growth technique using the KCl-LiCl eutectic as solvent. Surface microtopographic studies of the crystals indicated that the growth is made by the lateral spreading of the layers. Electrical resistivity measurements clearly show an anomaly at T55K,relatedwiththelowtemperaturestructuraltransition,ahighresidualresistivityratioof55 K, related with the low-temperature structural transition, a high residual resistivity ratio of 400 and a sharp superconducting transition at TE1.7 K confirming the very good quality of the crystals.

    Impact of nitrogen seeding on confinement and power load control of a high-triangularity JET ELMy H-mode plasma with a metal wall

    Get PDF
    This paper reports the impact on confinement and power load of the high-shape 2.5MA ELMy H-mode scenario at JET of a change from an all carbon plasma facing components to an all metal wall. In preparation to this change, systematic studies of power load reduction and impact on confinement as a result of fuelling in combination with nitrogen seeding were carried out in JET-C and are compared to their counterpart in JET with a metallic wall. An unexpected and significant change is reported on the decrease of the pedestal confinement but is partially recovered with the injection of nitrogen.Comment: 30 pages, 16 figure
    corecore