3,268 research outputs found
The progenitors of the intra-cluster light and intra-cluster globular clusters in galaxy groups and clusters
We use the IllustrisTNG50 cosmological hydrodynamical simulation,
complemented by a catalog of tagged globular clusters, to investigate the
properties and build up of two extended luminous components: the intra-cluster
light (ICL) and the intra-cluster globular clusters (ICGC). We select the 39
most massive groups and clusters in the box, spanning the range of virial
masses . We
find good agreement between predictions from the simulations and current
observational estimates of the fraction of mass in the ICL and its radial
extension. The stellar mass of the ICL is only of the stellar
mass in the central galaxy but encodes useful information on the assembly
history of the group or cluster. About half the ICL in all our systems is
brought in by galaxies in a narrow stellar mass range,
. However, the contribution of low-mass galaxies (
) to the build-up of the ICL varies broadly from system to
system, , a feature that might be recovered from the observable
properties of the ICL at . At fixed virial mass, systems where the
accretion of dwarf galaxies plays an important role have shallower metallicity
profiles, less metal content and a lower stellar mass in the ICL than systems
where the main contributors are more massive galaxies. We show that
intra-cluster GCs are also good tracers of this history, representing a
valuable alternative when diffuse light is not detectable
Cost-effectiveness and resource implications of aggressive action on tuberculosis in China, India, and South Africa: a combined analysis of nine models
Background
The post-2015 End TB Strategy sets global targets of reducing tuberculosis incidence by 50% and mortality by 75% by 2025. We aimed to assess resource requirements and cost-effectiveness of strategies to achieve these targets in China, India, and South Africa.
Methods
We examined intervention scenarios developed in consultation with country stakeholders, which scaled up existing interventions to high but feasible coverage by 2025. Nine independent modelling groups collaborated to estimate policy outcomes, and we estimated the cost of each scenario by synthesising service use estimates, empirical cost data, and expert opinion on implementation strategies. We estimated health effects (ie, disability-adjusted life-years averted) and resource implications for 2016–35, including patient-incurred costs. To assess resource requirements and cost-effectiveness, we compared scenarios with a base case representing continued current practice.
Findings
Incremental tuberculosis service costs differed by scenario and country, and in some cases they more than doubled existing funding needs. In general, expansion of tuberculosis services substantially reduced patient-incurred costs and, in India and China, produced net cost savings for most interventions under a societal perspective. In all three countries, expansion of access to care produced substantial health gains. Compared with current practice and conventional cost-effectiveness thresholds, most intervention approaches seemed highly cost-effective.
Interpretation
Expansion of tuberculosis services seems cost-effective for high-burden countries and could generate substantial health and economic benefits for patients, although substantial new funding would be required. Further work to determine the optimal intervention mix for each country is necessary
Vertical Field Effect Transistor based on Graphene-WS2 Heterostructures for flexible and transparent electronics
The celebrated electronic properties of graphene have opened way for
materials just one-atom-thick to be used in the post-silicon electronic era. An
important milestone was the creation of heterostructures based on graphene and
other two-dimensional (2D) crystals, which can be assembled in 3D stacks with
atomic layer precision. These layered structures have already led to a range of
fascinating physical phenomena, and also have been used in demonstrating a
prototype field effect tunnelling transistor - a candidate for post-CMOS
technology. The range of possible materials which could be incorporated into
such stacks is very large. Indeed, there are many other materials where layers
are linked by weak van der Waals forces, which can be exfoliated and combined
together to create novel highly-tailored heterostructures. Here we describe a
new generation of field effect vertical tunnelling transistors where 2D
tungsten disulphide serves as an atomically thin barrier between two layers of
either mechanically exfoliated or CVD-grown graphene. Our devices have
unprecedented current modulation exceeding one million at room temperature and
can also operate on transparent and flexible substrates
Neutralino versus axion/axino cold dark matter in the 19 parameter SUGRA model
We calculate the relic abundance of thermally produced neutralino cold dark
matter in the general 19 parameter supergravity (SUGRA-19) model. A scan over
GUT scale parameters reveals that models with a bino-like neutralino typically
give rise to a dark matter density \Omega_{\tz_1}h^2\sim 1-1000, i.e. between 1
and 4 orders of magnitude higher than the measured value. Models with higgsino
or wino cold dark matter can yield the correct relic density, but mainly for
neutralino masses around 700-1300 GeV. Models with mixed bino-wino or
bino-higgsino CDM, or models with dominant co-annihilation or A-resonance
annihilation can yield the correct abundance, but such cases are extremely hard
to generate using a general scan over GUT scale parameters; this is indicative
of high fine-tuning of the relic abundance in these cases. Requiring that
m_{\tz_1}\alt 500 GeV (as a rough naturalness requirement) gives rise to a
minimal probably dip in parameter space at the measured CDM abundance. For
comparison, we also scan over mSUGRA space with four free parameters. Finally,
we investigate the Peccei-Quinn augmented MSSM with mixed axion/axino cold dark
matter. In this case, the relic abundance agrees more naturally with the
measured value. In light of our cumulative results, we conclude that future
axion searches should probe much more broadly in axion mass, and deeper into
the axion coupling.Comment: 23 pages including 17 .eps figure
Multi-Messenger Astronomy with Extremely Large Telescopes
The field of time-domain astrophysics has entered the era of Multi-messenger
Astronomy (MMA). One key science goal for the next decade (and beyond) will be
to characterize gravitational wave (GW) and neutrino sources using the next
generation of Extremely Large Telescopes (ELTs). These studies will have a
broad impact across astrophysics, informing our knowledge of the production and
enrichment history of the heaviest chemical elements, constrain the dense
matter equation of state, provide independent constraints on cosmology,
increase our understanding of particle acceleration in shocks and jets, and
study the lives of black holes in the universe. Future GW detectors will
greatly improve their sensitivity during the coming decade, as will
near-infrared telescopes capable of independently finding kilonovae from
neutron star mergers. However, the electromagnetic counterparts to
high-frequency (LIGO/Virgo band) GW sources will be distant and faint and thus
demand ELT capabilities for characterization. ELTs will be important and
necessary contributors to an advanced and complete multi-messenger network.Comment: White paper submitted to the Astro2020 Decadal Surve
Deficiency and Also Transgenic Overexpression of Timp-3 Both Lead to Compromised Bone Mass and Architecture In Vivo
Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibition of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at multiple sites of extensive tissue remodelling. This extends to bone where its role, however, remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and architecture, histological and histochemical evaluation to characterise the skeletal phenotype of Timp-3 KO mice and have complemented this by also examining similar indices in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically target overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises tibial bone mass and structure in both cortical and trabecular compartments, with corresponding increases in osteoclasts. Transgenic overexpression also generates defects in tibial structure predominantly in the cortical bone along the entire shaft without significant increases in osteoclasts. These alterations in cortical mass significantly compromise predicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency and of transgenic overexpression extends to produce modification in craniofacial bones of both endochondral and intramembranous origins. These data indicate that the levels of Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture and that this arises from chondrogenic and osteogenic lineages
Strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye
We demonstrate a strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye molecules. Dispersion curves for surface plasmon polaritons on samples with a thin layer of silver covered with Sulforhodamine 101 molecules embedded in SU-8 polymer are obtained experimentally by reflectometry measurements and compared to the dispersion of samples without molecules. Clear Rabi splittings, with energies up to 360 and 190 meV, are observed at the positions of the dye absorption maxima. The split energies are dependent on the number of Sulforhodamine 101 molecules involved in the coupling process. Transfer matrix and coupled oscillator methods are used to model the studied multilayer structures with a great agreement with the experiments. Detection of the scattered radiation after the propagation provides another way to obtain the dispersion relation of the surface plasmon polaritons and, thus, provides insight into dynamics of the surface plasmon polariton/dye interaction, beyond the refrectometry measurements
GASKAP -- The Galactic ASKAP Survey
A survey of the Milky Way disk and the Magellanic System at the wavelengths
of the 21-cm atomic hydrogen (HI) line and three 18-cm lines of the OH molecule
will be carried out with the Australian Square Kilometre Array Pathfinder
telescope. The survey will study the distribution of HI emission and absorption
with unprecedented angular and velocity resolution, as well as molecular line
thermal emission, absorption, and maser lines. The area to be covered includes
the Galactic plane (|b|< 10deg) at all declinations south of delta = +40deg,
spanning longitudes 167deg through 360deg to 79deg at b=0deg, plus the entire
area of the Magellanic Stream and Clouds, a total of 13,020 square degrees. The
brightness temperature sensitivity will be very good, typically sigma_T ~ 1 K
at resolution 30arcsec and 1 km/s. The survey has a wide spectrum of scientific
goals, from studies of galaxy evolution to star formation, with particular
contributions to understanding stellar wind kinematics, the thermal phases of
the interstellar medium, the interaction between gas in the disk and halo, and
the dynamical and thermal states of gas at various positions along the
Magellanic Stream.Comment: 45 pages, 8 figures, Pub. Astron. Soc. Australia (in press
Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes
The immune system can mount T cell responses against tumors; however, the antigen specificities of tumor-infiltrating lymphocytes (TILs) are not well understood. We used yeast-display libraries of peptide-human leukocyte antigen (pHLA) to screen for antigens of “orphan” T cell receptors (TCRs) expressed on TILs from human colorectal adenocarcinoma. Four TIL-derived TCRs exhibited strong selection for peptides presented in a highly diverse pHLA-A∗02:01 library. Three of the TIL TCRs were specific for non-mutated self-antigens, two of which were present in separate patient tumors, and shared specificity for a non-mutated self-antigen derived from U2AF2. These results show that the exposed recognition surface of MHC-bound peptides accessible to the TCR contains sufficient structural information to enable the reconstruction of sequences of peptide targets for pathogenic TCRs of unknown specificity. This finding underscores the surprising specificity of TCRs for their cognate antigens and enables the facile identification of tumor antigens through unbiased screening
- …