1,417 research outputs found

    Surface structural investigation of starch-based biomaterials

    Get PDF
    Surface structural characterisation of three different starch-based blends (with poly[ethyleneco-( vinyl alcohol)], cellulose acetate and polycaprolactone) was carried out. The results show that there is a difference between the bulk and the surface composition of all studied blends. Two different hypotheses were investigated – predominant presence of a synthetic component on the surface and possible inter- and/or intramolecular bonds. The results were related to previous data for cell behaviour on those materials. It was found that both surface hydrophilicity and surface functionality are of great importance for cell adhesion and growth on starch-based biomaterials

    A systematic review of the concept and clinical applications of bone marrow aspirate concentrate in tendon pathology

    Get PDF
    Tendon pathologies are a group of musculoskeletal conditions frequently seen in clinical practice. They can be broadly classified into traumatic, degenerative and overuse-related tendinopathies. Rotator cuff tears, Achilles tendinopathy and tennis elbow are common examples of these conditions. Conventional treatments have shown inconsistent outcomes and might fail to provide satisfactory clinical improvement. With the growing trend towards the use of mesenchymal stem cells (MSCs) in other branches of medicine, there is an increasing interest in treating tendon pathologies using the bone marrow MSC. In this article, we provide a systematic literature review documenting the current status of the use of bone marrow aspirate concentrate (BMAC) for the treatment of tendon pathologies. We also asked the question on the safety of BMAC and whether there are potential complications associated with BMAC therapy. Our hypothesis is that the use of BMAC provides safe clinical benefit when used for the treatment of tendinopathy or as a biological augmentation of tendon repair. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist while preparing this systematic review. A literature search was carried out including the online databases of PubMed, EMBASE, ClinicalTrial.gov and the Cochrane Library from 1960 to the end of May 2015. Relevant studies were selected and critically appraised. Data from eligible studies were extracted and classified per type of tendon pathology. We included 37 articles discussing the application and use of BMAC for the treatment of tendon pathologies. The Critical Appraisal Skills Program (CASP) appraisal confirmed a satisfactory standard of 37 studies. Studies were sub-categorised into: techniques of extraction, processing and microscopic examination of BMAC (n = 18), where five studies looked at the evaluation of aspiration techniques (n = 5), augmentation of rotator cuff tears (n = 5), augmentation of tendo-achilles tendon (n = 1), treatment of gluteal tendon injuries (n = 1), management of elbow epicondylitis (n = 2), management of patellar tendinopathy (n = 1) and complications related to BMAC (n = 5). Multiple experimental studies investigated the use of BMAC for tendon repair; nonetheless, there are only limited clinical studies available in this field. Unfortunately, due to the scarcity of studies, which were mainly case series, the current level of evidence is weak. We strongly recommend further future randomised controlled studies in this field to allow scientists and clinicians make evidence-based conclusions

    Stoichiometry of Base Excision Repair Proteins Correlates with Increased Somatic CAG Instability in Striatum over Cerebellum in Huntington's Disease Transgenic Mice

    Get PDF
    Huntington's disease (HD) is a progressive neurodegenerative disorder caused by expansion of an unstable CAG repeat in the coding sequence of the Huntingtin (HTT) gene. Instability affects both germline and somatic cells. Somatic instability increases with age and is tissue-specific. In particular, the CAG repeat sequence in the striatum, the brain region that preferentially degenerates in HD, is highly unstable, whereas it is rather stable in the disease-spared cerebellum. The mechanisms underlying the age-dependence and tissue-specificity of somatic CAG instability remain obscure. Recent studies have suggested that DNA oxidation and OGG1, a glycosylase involved in the repair of 8-oxoguanine lesions, contribute to this process. We show that in HD mice oxidative DNA damage abnormally accumulates at CAG repeats in a length-dependent, but age- and tissue-independent manner, indicating that oxidative DNA damage alone is not sufficient to trigger somatic instability. Protein levels and activities of major base excision repair (BER) enzymes were compared between striatum and cerebellum of HD mice. Strikingly, 5′-flap endonuclease activity was much lower in the striatum than in the cerebellum of HD mice. Accordingly, Flap Endonuclease-1 (FEN1), the main enzyme responsible for 5′-flap endonuclease activity, and the BER cofactor HMGB1, both of which participate in long-patch BER (LP–BER), were also significantly lower in the striatum compared to the cerebellum. Finally, chromatin immunoprecipitation experiments revealed that POLβ was specifically enriched at CAG expansions in the striatum, but not in the cerebellum of HD mice. These in vivo data fit a model in which POLβ strand displacement activity during LP–BER promotes the formation of stable 5′-flap structures at CAG repeats representing pre-expanded intermediate structures, which are not efficiently removed when FEN1 activity is constitutively low. We propose that the stoichiometry of BER enzymes is one critical factor underlying the tissue selectivity of somatic CAG expansion

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Measurement and interpretation of same-sign W boson pair production in association with two jets in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents the measurement of fducial and diferential cross sections for both the inclusive and electroweak production of a same-sign W-boson pair in association with two jets (W±W±jj) using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of √s = 13 TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity diference. The measured fducial cross sections for electroweak and inclusive W±W±jj production are 2.92 ± 0.22 (stat.) ± 0.19 (syst.)fb and 3.38±0.22 (stat.)±0.19 (syst.)fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confdence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons H±± that are produced in vector-boson fusion processes and decay into a same-sign W boson pair is performed. The largest deviation from the Standard Model occurs for an H±± mass near 450 GeV, with a global signifcance of 2.5 standard deviations

    Search for pair production of squarks or gluinos decaying via sleptons or weak bosons in final states with two same-sign or three leptons with the ATLAS detector

    Get PDF
    A search for pair production of squarks or gluinos decaying via sleptons or weak bosons is reported. The search targets a final state with exactly two leptons with same-sign electric charge or at least three leptons without any charge requirement. The analysed data set corresponds to an integrated luminosity of 139 fb−1 of proton-proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Multiple signal regions are defined, targeting several SUSY simplified models yielding the desired final states. A single control region is used to constrain the normalisation of the WZ + jets background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of several supersymmetric models featuring R-parity conservation or R-parity violation, yielding exclusion limits surpassing those from previous searches. In models considering gluino (squark) pair production, gluino (squark) masses up to 2.2 (1.7) TeV are excluded at 95% confidence level

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ¯bγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer κλ but also of the quartic HHV V (V = W, Z) coupling modifer κ2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit µHH < 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 < κλ < 6.9 and −0.5 < κ2V < 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS

    Get PDF
    Parton energy loss in the quark–gluon plasma (QGP) is studied with a measurement of photon-tagged jet production in 1.7 nb−1 of Pb+Pb data and 260 pb−1 of pp data, both at sNN=5.02 TeV, with the ATLAS detector. The process pp →γ+jet+X and its analogue in Pb+Pb collisions is measured in events containing an isolated photon with transverse momentum (pT) above 50 GeV and reported as a function of jet pT. This selection results in a sample of jets with a steeply falling pT distribution that are mostly initiated by the showering of quarks. The pp and Pb+Pb measurements are used to report the nuclear modification factor, RAA, and the fractional energy loss, Sloss, for photon-tagged jets. In addition, the results are compared with the analogous ones for inclusive jets, which have a significantly smaller quark-initiated fraction. The RAA and Sloss values are found to be significantly different between those for photon-tagged jets and inclusive jets, demonstrating that energy loss in the QGP is sensitive to the colour-charge of the initiating parton. The results are also compared with a variety of theoretical models of colour-charge-dependent energy loss
    corecore