360 research outputs found

    Optimal therapy in Gaucher disease

    Get PDF
    Gaucher disease (GD), the inherited deficiency of the lysosomal enzyme glucocerebrosidase, presents with a wide range of symptoms of varying severity, and primarily affects the skeletal, hematologic and nervous systems. To date, the standard of care has included enzyme replacement therapy with imiglucerase. Although imiglucerase is highly effective in reversing the visceral and hematologic manifestations, skeletal disease is slow to respond, pulmonary involvement is relatively resistant, and the CNS involvement is not impacted. Because of the recent manufacturing and processing problems, the research and development of alternative therapeutics has become more pressing. The divergent phenotypes and the heterogeneity involving different organ systems implicates the involvement of several pathological processes that include enzyme deficiency, substrate accumulation, protein misfolding, and macrophage activation, that differ in each patient with GD. Thus, the therapy should be tailored individually in order to target multiple pathways that interplay in GD

    An open-label clinical trial of agalsidase alfa enzyme replacement therapy in children with Fabry disease who are naïve to enzyme replacement therapy.

    Get PDF
    BackgroundFollowing a drug manufacturing process change, safety/efficacy of agalsidase alfa were evaluated in enzyme replacement therapy (ERT)-naïve children with Fabry disease.MethodsIn an open-label, multicenter, Phase II study (HGT-REP-084; Shire), 14 children aged ≥7 years received 0.2 mg/kg agalsidase alfa every other week for 55 weeks. Primary endpoints: safety, changes in autonomic function (2-hour Holter monitoring). Secondary endpoints: estimated glomerular filtration rate, left ventricular mass index (LVMI), midwall fractional shortening, pharmacodynamic parameters, and patient-reported quality-of-life.ResultsAmong five boys (median 10.2 [range 6.7, 14.4] years) and nine girls (14.8 [10.1, 15.9] years), eight patients experienced infusion-related adverse events (vomiting, n=4; nausea, n=3; dyspnea, n=3; chest discomfort, n=2; chills, n=2; dizziness, n=2; headache, n=2). One of these had several hypersensitivity episodes. However, no patient discontinued for safety reasons and no serious adverse events occurred. One boy developed immunoglobulin G (IgG) and neutralizing antidrug antibodies. Overall, no deterioration in cardiac function was observed in seven patients with low/abnormal SDNN (standard deviation of all filtered RR intervals; <100 ms) and no left ventricular hypertrophy: mean (SD) baseline SDNN, 81.6 (20.9) ms; mean (95% confidence interval [CI]) change from baseline to week 55, 17.4 (2.9, 31.9) ms. Changes in SDNN correlated with changes in LVMI (r=-0.975). No change occurred in secondary efficacy endpoints: mean (95% CI) change from baseline at week 55 in LVMI, 0.16 (-3.3, 3.7) g/m(2.7); midwall fractional shortening, -0.62% (-2.7%, 1.5%); estimated glomerular filtration rate, 0.15 (-11.4, 11.7) mL/min/1.73 m(2); urine protein, -1.8 (-6.0, 2.4) mg/dL; urine microalbumin, 0.6 (-0.5, 1.7) mg/dL; plasma globotriaosylceramide (Gb3), -5.71 (-10.8, -0.6) nmol/mL; urinary Gb3, -1,403.3 (-3,714.0, 907.4) nmol/g creatinine, or clinical quality-of-life outcomes.ConclusionFifty-five weeks' agalsidase alfa ERT at 0.2 mg/kg every other week was well tolerated. Disease progression may be slowed when ERT is started prior to major organ dysfunction.Trial registrationhttps://ClinicalTrials.gov identifier NCT01363492

    Bilateral symmetrical cortical osteolytic lesions in two patients with Gaucher disease

    Get PDF
    Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder characterized by the reduced or absent activity of glucocerebrosidase. The disease is split into three types. Type 3, or chronic neuronopathic GD, manifests with heterogeneous clinical presentations. Skeletal manifestations of GD can include abnormal bone remodeling resulting in the characteristic Erlenmeyer flask deformities, painful bone crises, osteopenia, and an increased frequency of fractures. Osteolytic lesions can also occur but are rare and tend to be large, expanding intramedullary lesions with cortical thinning. We present two adolescent patients with type 3 GD who developed bilateral symmetrical cortical osteolytic lesions. The lesions in both cases demonstrate predominant cortical scalloping with fairly indolent growth. Neither patient manifests some of the more common bony manifestations of GD—bone crises or osteonecrosis. These atypical and unique skeletal findings in two unrelated probands with type 3 GD further expand the extent of phenotypic variation encountered in this single gene disorder

    Pharmacokinetics, pharmacodynamics, and safety of moss-aGalactosidase A in patients with Fabry disease

    Get PDF
    Moss-aGalactosidase A (moss-aGal) is a moss-derived version of human α-galactosidase developed for enzyme replacement therapy in patients with Fabry disease. It exhibits a homogenous N-glycosylation profile with >90% mannose-terminated glycans. In contrast to mammalian cell produced α-galactosidase, moss-aGal does not rely on mannose-6-phosphate receptor mediated endocytosis but targets the mannose receptor for tissue uptake. We conducted a phase 1 clinical trial with moss-aGal in six patients with confirmed diagnosis of Fabry disease during a 28-day schedule. All patients received a single dose of 0.2 mg/kg moss-aGal by i.v.-infusion. Primary endpoints of the trial were safety and pharmacokinetics; secondary endpoints were pharmacodynamics by analyzing urine and plasma Gb3 and lyso-Gb3 concentrations. In all patients, the administered single dose was well tolerated. No safety issues were observed. Pharmacokinetic data revealed a stable nonlinear profile with a short plasma half-life of moss-aGal of 14 minutes. After one single dose of moss-aGal, urinary Gb3 concentrations decreased up to 23% 7 days and up to 60% 28 days post-dose. Plasma concentrations of lyso-Gb3 decreased by 3.8% and of Gb3 by 11% 28 days post-dose. These data reveal that a single dose of moss-aGal was safe, well tolerated, and led to a prolonged reduction of Gb3 excretion. As previously shown, moss-aGal is taken up via the mannose receptor, which is expressed on macrophages but also on endothelial and kidney cells. Thus, these data indicate that moss-aGal may target kidney cells. After these promising results, phase 2/3 clinical trials are in preparation

    Long-term safety and efficacy of pegunigalsidase alfa: A multicenter 6-year study in adult patients with Fabry disease

    Get PDF
    Purpose: Fabry disease (FD) is a rare lysosomal storage disorder caused by pathogenic variants in the GLA gene encoding α-galactosidase (α-Gal)-A. We evaluated long-term safety/efficacy of pegunigalsidase alfa, a novel PEGylated α-Gal-A enzyme replacement therapy (ERT) now approved for FD. Methods: In a phase-1/2 dose-ranging study, 15 ERT-naive adults with FD completed 12 months of pegunigalsidase alfa and enrolled in this 60-month open-label extension of 1 mg/kg pegunigalsidase alfa infusions every 2 weeks. Results: Fifteen patients enrolled (8 males; 7 females); 10 completed ≥48 months (60 months total treatment), and 2 completed 60 months (72 months total treatment). During treatment, most treatment-emergent adverse events were mild/moderate in severity and all infusion-related reactions were mild/moderate in severity. Four patients were transiently positive for anti-pegunigalsidase alfa IgG. Patients showed continuous reduction in plasma lyso-Gb3 concentrations with mean (standard error) reduction of 76.1 [25.1] ng/mL from baseline to month 24. At 60 months, the estimated glomerular filtration rate slope was comparable to that observed in patients treated with other ERTs. Cardiac function assessments revealed stability; no cardiac fibrosis was observed. Conclusion: In this first long-term assessment of pegunigalsidase alfa administration in patients with FD, we found favorable safety/efficacy. Our data suggest long-term continuous benefits of pegunigalsidase alfa treatment in adults with FD

    An open-label clinical trial of agalsidase alfa enzyme replacement therapy in children with Fabry disease who are naïve to enzyme replacement therapy

    Get PDF
    BACKGROUND: Following a drug manufacturing process change, safety/efficacy of agalsidase alfa were evaluated in enzyme replacement therapy (ERT)-naïve children with Fabry disease. METHODS: In an open-label, multicenter, Phase II study (HGT-REP-084; Shire), 14 children aged ≥7 years received 0.2 mg/kg agalsidase alfa every other week for 55 weeks. Primary endpoints: safety, changes in autonomic function (2-hour Holter monitoring). Secondary endpoints: estimated glomerular filtration rate, left ventricular mass index (LVMI), midwall fractional shortening, pharmacodynamic parameters, and patient-reported quality-of-life. RESULTS: Among five boys (median 10.2 [range 6.7, 14.4] years) and nine girls (14.8 [10.1, 15.9] years), eight patients experienced infusion-related adverse events (vomiting, n=4; nausea, n=3; dyspnea, n=3; chest discomfort, n=2; chills, n=2; dizziness, n=2; headache, n=2). One of these had several hypersensitivity episodes. However, no patient discontinued for safety reasons and no serious adverse events occurred. One boy developed immunoglobulin G (IgG) and neutralizing antidrug antibodies. Overall, no deterioration in cardiac function was observed in seven patients with low/abnormal SDNN (standard deviation of all filtered RR intervals; <100 ms) and no left ventricular hypertrophy: mean (SD) baseline SDNN, 81.6 (20.9) ms; mean (95% confidence interval [CI]) change from baseline to week 55, 17.4 (2.9, 31.9) ms. Changes in SDNN correlated with changes in LVMI (r=−0.975). No change occurred in secondary efficacy endpoints: mean (95% CI) change from baseline at week 55 in LVMI, 0.16 (−3.3, 3.7) g/m(2.7); midwall fractional shortening, −0.62% (−2.7%, 1.5%); estimated glomerular filtration rate, 0.15 (−11.4, 11.7) mL/min/1.73 m(2); urine protein, −1.8 (−6.0, 2.4) mg/dL; urine microalbumin, 0.6 (−0.5, 1.7) mg/dL; plasma globotriaosylceramide (Gb(3)), −5.71 (−10.8, −0.6) nmol/mL; urinary Gb(3), −1,403.3 (−3,714.0, 907.4) nmol/g creatinine, or clinical quality-of-life outcomes. CONCLUSION: Fifty-five weeks’ agalsidase alfa ERT at 0.2 mg/kg every other week was well tolerated. Disease progression may be slowed when ERT is started prior to major organ dysfunction. TRIAL REGISTRATION: https://ClinicalTrials.gov identifier NCT01363492

    Parkinsonism Associated with Glucocerebrosidase Mutation

    Get PDF
    BACKGROUND: Gaucher's disease is an autosomal recessive, lysosomal storage disease caused by mutations of the β-glucocerebrosidase gene (GBA). There is increasing evidence that GBA mutations are a genetic risk factor for the development of Parkinson's disease (PD). We report herein a family of Koreans exhibiting parkinsonism-associated GBA mutations. CASE REPORT: A 44-year-old woman suffering from slowness and paresthesia of the left arm for the previous 1.5years, visited our hospital to manage known invasive ductal carcinoma. During a preoperative evaluation, she was diagnosed with Gaucher's disease and double mutations of S271G and R359X in GBA. Parkinsonian features including low amplitude postural tremors, rigidity, bradykinesia and shuffling gait were observed. Genetic analysis also revealed that her older sister, who had also been diagnosed with PD and had been taking dopaminergic drugs for 8-years, also possessed a heterozygote R359X mutation in GBA. (18)F-fluoropropylcarbomethoxyiodophenylnortropane positron-emission tomography in these patients revealed decreased uptake of dopamine transporter in the posterior portion of the bilateral putamen. CONCLUSIONS: This case study demonstrates Korean familial cases of PD with heterozygote mutation of GBA, further supporting the association between PD and GBA mutation.ope

    Oral Migalastat HCl Leads to Greater Systemic Exposure and Tissue Levels of Active α-Galactosidase A in Fabry Patients when Co-Administered with Infused Agalsidase.

    Get PDF
    UnlabelledMigalastat HCl (AT1001, 1-Deoxygalactonojirimycin) is an investigational pharmacological chaperone for the treatment of α-galactosidase A (α-Gal A) deficiency, which leads to Fabry disease, an X-linked, lysosomal storage disorder. The currently approved, biologics-based therapy for Fabry disease is enzyme replacement therapy (ERT) with either agalsidase alfa (Replagal) or agalsidase beta (Fabrazyme). Based on preclinical data, migalastat HCl in combination with agalsidase is expected to result in the pharmacokinetic (PK) enhancement of agalsidase in plasma by increasing the systemic exposure of active agalsidase, thereby leading to increased cellular levels in disease-relevant tissues. This Phase 2a study design consisted of an open-label, fixed-treatment sequence that evaluated the effects of single oral doses of 150 mg or 450 mg migalastat HCl on the PK and tissue levels of intravenously infused agalsidase (0.2, 0.5, or 1.0 mg/kg) in male Fabry patients. As expected, intravenous administration of agalsidase alone resulted in increased α-Gal A activity in plasma, skin, and peripheral blood mononuclear cells (PBMCs) compared to baseline. Following co-administration of migalastat HCl and agalsidase, α-Gal A activity in plasma was further significantly increased 1.2- to 5.1-fold compared to agalsidase administration alone, in 22 of 23 patients (95.6%). Importantly, similar increases in skin and PBMC α-Gal A activity were seen following co-administration of migalastat HCl and agalsidase. The effects were not related to the administered migalastat HCl dose, as the 150 mg dose of migalastat HCl increased α-Gal A activity to the same extent as the 450 mg dose. Conversely, agalsidase had no effect on the plasma PK of migalastat. No migalastat HCl-related adverse events or drug-related tolerability issues were identified.Trial registrationClinicalTrials.gov NCT01196871

    Evaluation of the efficacy and safety of three dosing regimens of agalsidase alfa enzyme replacement therapy in adults with Fabry disease

    Get PDF
    PURPOSE: Efficacy and safety of agalsidase alfa at 0.2 mg/kg weekly were compared with 0.2 mg/kg every other week (EOW). Exploratory analyses were performed for 0.4 mg/kg weekly. PATIENTS AND METHODS: This was a 53-week, Phase III/IV, multicenter, open-label study (NCT01124643) in treatment-naïve adults (≥18 years) with Fabry disease. Inclusion criteria were left ventricular hypertrophy at baseline, defined as left ventricular mass indexed to height >50 g/m(2.7) for males and >47 g/m(2.7) for females. Primary endpoint was reduction of left ventricular mass indexed to height as assessed by echocardiography. Secondary endpoints included cardiac (peak oxygen consumption, 6-minute walk test, Minnesota Living with Heart Failure Questionnaire, New York Heart Association classification), renal (Modification of Diet in Renal Disease, estimated glomerular filtration rate), and biomarker (plasma globotriaosylceramide) assessments. Safety endpoints were adverse events and anti–agalsidase alfa antibodies. RESULTS: Twenty patients were randomized to 0.2 mg/kg EOW (mean age, 50.3 years; 70% male), 19 to 0.2 mg/kg weekly (51.8 years; 53% male), and 5 to 0.4 mg/kg weekly (49.4 years; 40% male). The mean change in left ventricular mass indexed to height by Week 53 in the 0.2-mg/kg EOW and weekly groups was 3.2 g/m(2.7) and 0.5 g/m(2.7), with no significant difference between groups. No clinically meaningful changes by Week 53 were found within or between the 0.2-mg/kg groups for peak oxygen consumption, 6-minute walk test, or Minnesota Living with Heart Failure Questionnaire. Two patients in each group improved by ≥1 New York Heart Association classification. No significant differences were found between 0.2 mg/kg EOW and weekly for mean change in estimated glomerular filtration rate (−1.21 mL/min/1.73 m(2) vs −3.32 mL/min/1.73 m(2)) or plasma globotriaosylceramide (−1.05 nmol/mL vs −2.13 nmol/mL), respectively. Infusion-related adverse events were experienced by 25% and 21% in the 0.2-mg/kg EOW and weekly groups. Tachycardia, fatigue, and hypotension were experienced by two or more patients overall. Anti–agalsidase alfa antibodies were detected in 11.4% of patients and neutralizing antibodies in 6.8%. Infusion-related reactions did not appear to be correlated with antibody status. CONCLUSION: No efficacy or safety differences were found when the approved EOW dosage of agalsidase alfa was increased to weekly administration. Exploratory analyses for 0.4 mg/kg weekly showed similar results
    corecore