123 research outputs found

    Modelling fitness changes in wild Atlantic salmon populations faced by spawning intrusion of domesticated escapees

    Get PDF
    Genetic interaction between domesticated escapees and wild conspecifics represents a persistent challenge to an environmentally sustainable Atlantic salmon aquaculture industry. We used a recently developed eco-genetic model (IBSEM) to investigate potential changes in a wild salmon population subject to spawning intrusion from domesticated escapees. At low intrusion levels (5–10% escapees), phenotypic and demographic characteristics of the recipient wild population only displayed weak changes over 50 years, and only at high intrusion levels (30–50% escapees) were clear changes visible in this period. Our modelling also revealed that genetic changes in phenotypic and demographic characteristics were greater in situations where strayers originating from a neighboring wild population were domestication-admixed and changed in parallel with the focal wild population, as opposed to non-admixed. While recovery in the phenotypic and demographic characteristics was observed in many instances after domesticated salmon intrusion was halted, in the most extreme intrusion scenario, the population went extinct. Based upon results from these simulations, together with existing knowledge, we suggest that a combination of reduced spawning success of domesticated escapees, natural selection purging maladapted phenotypes/genotypes from the wild population, and phenotypic plasticity, buffer the rate and magnitude of change in phenotypic and demographic characteristics of wild populations subject to spawning intrusion of domesticated escapees. The results of our simulations also suggest that under specific conditions, natural straying among wild populations may buffer genetic changes in phenotypic and demographic characteristics resulting from introgression of domesticated escapees, and that variation in straying in time and space may contribute to observed differences in domestication-driven introgression among native populations

    Interpolatory methods for H\mathcal{H}_\infty model reduction of multi-input/multi-output systems

    Full text link
    We develop here a computationally effective approach for producing high-quality H\mathcal{H}_\infty-approximations to large scale linear dynamical systems having multiple inputs and multiple outputs (MIMO). We extend an approach for H\mathcal{H}_\infty model reduction introduced by Flagg, Beattie, and Gugercin for the single-input/single-output (SISO) setting, which combined ideas originating in interpolatory H2\mathcal{H}_2-optimal model reduction with complex Chebyshev approximation. Retaining this framework, our approach to the MIMO problem has its principal computational cost dominated by (sparse) linear solves, and so it can remain an effective strategy in many large-scale settings. We are able to avoid computationally demanding H\mathcal{H}_\infty norm calculations that are normally required to monitor progress within each optimization cycle through the use of "data-driven" rational approximations that are built upon previously computed function samples. Numerical examples are included that illustrate our approach. We produce high fidelity reduced models having consistently better H\mathcal{H}_\infty performance than models produced via balanced truncation; these models often are as good as (and occasionally better than) models produced using optimal Hankel norm approximation as well. In all cases considered, the method described here produces reduced models at far lower cost than is possible with either balanced truncation or optimal Hankel norm approximation

    Pre-fertilization gamete thermal environment influences reproductive success, unmasking opposing sex-specific responses in Atlantic salmon (Salmo salar)

    Get PDF
    The environment gametes perform in just before fertilization is increasingly recognized to affect offspring fitness, yet the contributions of male and female gametes and their adaptive significance remain largely unexplored. Here, we investigated gametic thermal plasticity and its effects on hatching success and embryo performance in Atlantic salmon (Salmo salar). Eggs and sperm were incubated overnight at 2°C or 8°C, temperatures within the optimal thermal range of this species. Crosses between warm- and cold-incubated gametes were compared using a full-factorial design, with half of each clutch reared in cold temperatures and the other in warm temperatures. This allowed disentangling single-sex interaction effects when pre-fertilization temperature of gametes mismatched embryonic conditions. Pre-fertilization temperature influenced hatch timing and synchrony, and matching sperm and embryo temperatures resulted in earlier hatching. Warm incubation benefited eggs but harmed sperm, reducing the hatching success and, overall, gametic thermal plasticity did not enhance offspring fitness, indicating vulnerability to thermal changes. We highlight the sensitivity of male gametes to higher temperatures, and that gamete acclimation may not effectively buffer against deleterious effects of thermal fluctuations. From an applied angle, we propose the differential storage of male and female gametes as a tool to enhance sustainability within the hatcheries

    Progress on the Experimental Search for Charge Symmetry Breaking (CSB) in n-p Scattering

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 81-14339 and by Indiana Universit

    An Experimental Test of Charge Symmetry in n-p Scattering

    Get PDF
    This work was supported by the National Science Foundation Grants NSF PHY 78-22774 A03, NSF PHY 81-14339, and by Indiana Universit

    How Fitch-Margoliash Algorithm can Benefit from Multi Dimensional Scaling

    Get PDF
    Whatever the phylogenetic method, genetic sequences are often described as strings of characters, thus molecular sequences can be viewed as elements of a multi-dimensional space. As a consequence, studying motion in this space (ie, the evolutionary process) must deal with the amazing features of high-dimensional spaces like concentration of measured phenomenon

    A white humpback whale (Megaptera novaeangliae) in the Atlantic Ocean, Svalbard, Norway, August 2012

    Get PDF
    A white humpback whale (Megaptera novaeangliae) was observed on several occasions off Svalbard, Norway, during August 2012. The animal was completely white, except for a few small dark patches on the ventral side of its fluke. The baleen plates were light-coloured, but the animal's eyes had normal (dark) colouration. This latter characteristic indicates that the animal was not an albino; it was a leucistic individual. The animal was a full-sized adult and was engaged in “bubble-feeding”, together with 15–20 other humpback whales, each time it was seen. Subsequent to these sightings, polling of the marine mammal science community has resulted in the discovery of two other observations of white humpback whales in the Barents Sea area, one in 2004 and another in 2006; in both cases the observed individuals were adult animals. It is likely that all of these sightings are of the same individual, but there is no genetic or photographic evidence to confirm this suggestion. The rarity of observations of such white individuals suggests that they are born at very low frequencies or that the ontogenetic survival rates of the colour morph are low

    Association between Features of Spontaneous Late Preterm Labor and Late Preterm Birth

    Get PDF
    Objective This study aimed to evaluate the association between clinical and examination features at admission and late preterm birth. Study Design The present study is a secondary analysis of a randomized trial of singleton pregnancies at 34 0/7 to 36 5/7 weeks' gestation. We included women in spontaneous preterm labor with intact membranes and compared them by gestational age at delivery (preterm vs. term). We calculated a statistical cut-point optimizing the sensitivity and specificity of initial cervical dilation and effacement at predicting preterm birth and used multivariable regression to identify factors associated with late preterm delivery. Results A total of 431 out of 732 (59%) women delivered preterm. Cervical dilation ≥ 4 cm was 60% sensitive and 68% specific for late preterm birth. Cervical effacement ≥ 75% was 59% sensitive and 65% specific for late preterm birth. Earlier gestational age at randomization, nulliparity, and fetal malpresentation were associated with late preterm birth. The final regression model including clinical and examination features significantly improved late preterm birth prediction (81% sensitivity, 48% specificity, area under the curve = 0.72, 95% confidence interval [CI]: 0.68-0.75, and p -value < 0.01). Conclusion Four in 10 women in late-preterm labor subsequently delivered at term. Combination of examination and clinical features (including parity and gestational age) improved late-preterm birth prediction

    Perspectives in visual imaging for marine biology and ecology: from acquisition to understanding

    Get PDF
    Durden J, Schoening T, Althaus F, et al. Perspectives in Visual Imaging for Marine Biology and Ecology: From Acquisition to Understanding. In: Hughes RN, Hughes DJ, Smith IP, Dale AC, eds. Oceanography and Marine Biology: An Annual Review. 54. Boca Raton: CRC Press; 2016: 1-72

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
    corecore