865 research outputs found

    ALMA Uncovers Highly Filamentary Structure toward the Sgr E Region

    Get PDF
    We report on the discovery of linear filaments observed in the CO(1-0) emission for a ∼2′ field of view toward the Sgr E star-forming region, centered at (l, b) = (358.°720, 0.°011). The Sgr E region is thought to be at the turbulent intersection of the “far dust lane” associated with the Galactic bar and the Central Molecular Zone (CMZ). This region is subject to strong accelerations, which are generally thought to inhibit star formation, yet Sgr E contains a large number of H ii regions. We present 12CO(1-0), 13CO(1-0), and C18O(1-0) spectral line observations from the Atacama Large Millimeter/submillimeter Array and provide measurements of the physical and kinematic properties for two of the brightest filaments. These filaments have widths (FWHMs) of ∼0.1 pc and are oriented nearly parallel to the Galactic plane, with angles from the Galactic plane of ∼2°. The filaments are elongated, with lower-limit aspect ratios of ∼5:1. For both filaments, we detect two distinct velocity components that are separated by about 15 km s−1. In the C18O spectral line data, with ∼0.09 pc spatial resolution, we find that these velocity components have relatively narrow (∼1-2 km s−1) FWHM line widths when compared to other sources toward the Galactic center. The properties of these filaments suggest that the gas in the Sgr E complex is being “stretched,” as it is rapidly accelerated by the gravitational field of the Galactic bar while falling toward the CMZ, a result that could provide insights into the extreme environment surrounding this region and the large-scale processes that fuel this environment

    The filamentary structures in the CO emission toward the Milky Way disk

    Get PDF
    We present a statistical study of the filamentary structure orientation in the CO emission observations obtained in the Milky Way Imaging Scroll Painting survey in the range 25 (.)degrees . degrees 8 < l < 49 (.)degrees . degrees 7, |b| <= 1 (.)degrees degrees 25, and -100 < v(LSR) < 135 km s(-1). We found that most of the filamentary structures in the (CO)-C-12 and (CO)-C-13 emission do not show a global preferential orientation either parallel or perpendicular to the Galactic plane. However, we found ranges in Galactic longitude and radial velocity where the (CO)-C-12 and (CO)-C-13 filamentary structures are parallel to the Galactic plane. These preferential orientations are different from those found for the HI emission. We consider this an indication that the molecular structures do not simply inherit these properties from parental atomic clouds. Instead, they are shaped by local physical conditions, such as stellar feedback, magnetic fields, and Galactic spiral shocks

    The Galactic dynamics revealed by the filamentary structure in atomic hydrogen emission

    Get PDF
    We present a study of the filamentary structure in the neutral atomic hydrogen (H ̄I) emission at the 21 cm wavelength toward the Galactic plane using the 16 2.2-resolution observations in the H ̄I 4(HI4PI) survey. Using the Hessian matrix method across radial velocity channels, we identified the filamentary structures and quantified their orientations using circular statistics. We found that the regions of the Milky Waya's disk beyond 10 kpc and up to roughly 18 kpc from the Galactic center display H ̄I filamentary structures predominantly parallel to the Galactic plane. For regions at lower Galactocentric radii, we found that the H ̄I filaments are mostly perpendicular or do not have a preferred orientation with respect to the Galactic plane. We interpret these results as the imprint of supernova feedback in the inner Galaxy and Galactic rotation and shear in the outer Milky Way. We found that the H ̄I filamentary structures follow the Galactic warp and flaring and that they highlight some of the variations interpreted as the effect of the gravitational interaction with satellite galaxies. In addition, the mean scale height of the filamentary structures is lower than that sampled by the bulk of the H ̄I emission, thus indicating that the cold and warm atomic hydrogen phases have different scale heights in the outer galaxy. Finally, we found that the fraction of the column density in H ̄I filaments is almost constant up to approximately 18 kpc from the Galactic center. This is possibly a result of the roughly constant ratio between the cold and warm atomic hydrogen phases inferred from the H ̄I absorption studies. Our results indicate that the H ̄I filamentary structures provide insight into the dynamical processes shaping the Galactic disk. Their orientations record how and where the stellar energy input, the Galactic fountain process, the cosmic ray diffusion, and the gas accretion have molded the diffuse interstellar medium in the Galactic plane

    Radio continuum emission in the northern Galactic plane: Sources and spectral indices from the THOR survey

    Get PDF
    Radio continuum surveys of the Galactic plane can find and characterize HII regions, supernova remnants (SNRs), planetary nebulae (PNe), and extragalactic sources. A number of surveys at high angular resolution (<25") at different wavelengths exist to study the interstellar medium (ISM), but no comparable high-resolution and high-sensitivity survey exists at long radio wavelengths around 21cm. We observed a large fraction of the Galactic plane in the first quadrant of the Milky Way (l=14.0-67.4deg and |b| < 1.25deg) with the Karl G. Jansky Very Large Array (VLA) in the C-configuration covering six continuum spectral windows. These data provide a detailed view on the compact as well as extended radio emission of our Galaxy and thousands of extragalactic background sources. We used the BLOBCAT software and extracted 10916 sources. After removing spurious source detections caused by the sidelobes of the synthesised beam, we classified 10387 sources as reliable detections. We smoothed the images to a common resolution of 25" and extracted the peak flux density of each source in each spectral window (SPW) to determine the spectral indices α\alpha (assuming I(ν)ναI(\nu)\propto\nu^\alpha). By cross-matching with catalogs of HII regions, SNRs, PNe, and pulsars, we found radio counterparts for 840 HII regions, 52 SNRs, 164 PNe, and 38 pulsars. We found 79 continuum sources that are associated with X-ray sources. We identified 699 ultra-steep spectral sources (α<1.3\alpha < -1.3) that could be high-redshift galaxies. Around 9000 of the sources we extracted are not classified specifically, but based on their spatial and spectral distribution, a large fraction of them is likely to be extragalactic background sources. More than 7750 sources do not have counterparts in the SIMBAD database, and more than 3760 sources do not have counterparts in the NED database

    Strong Double Higgs Production at the LHC

    Get PDF
    The hierarchy problem and the electroweak data, together, provide a plausible motivation for considering a light Higgs emerging as a pseudo-Goldstone boson from a strongly-coupled sector. In that scenario, the rates for Higgs production and decay differ significantly from those in the Standard Model. However, one genuine strong coupling signature is the growth with energy of the scattering amplitudes among the Goldstone bosons, the longitudinally polarized vector bosons as well as the Higgs boson itself. The rate for double Higgs production in vector boson fusion is thus enhanced with respect to its negligible rate in the SM. We study that reaction in pp collisions, where the production of two Higgs bosons at high pT is associated with the emission of two forward jets. We concentrate on the decay mode hh -> WW^(*)WW^(*) and study the semi-leptonic decay chains of the W's with 2, 3 or 4 leptons in the final states. While the 3 lepton final states are the most relevant and can lead to a 3 sigma signal significance with 300 fb^{-1} collected at a 14 TeV LHC, the two same-sign lepton final states provide complementary information. We also comment on the prospects for improving the detectability of double Higgs production at the foreseen LHC energy and luminosity upgrades.Comment: 54 pages, 26 figures. v2: typos corrected, a few comments and one table added. Version published in JHE

    Kinematics of Galactic Centre clouds shaped by shear-seeded solenoidal turbulence

    Get PDF
    The Central Molecular Zone (CMZ; the central ∼500 pc of the Galaxy) is a kinematically unusual environment relative to the Galactic disc, with high-velocity dispersions and a steep size–linewidth relation of the molecular clouds. In addition, the CMZ region has a significantly lower star formation rate (SFR) than expected by its large amount of dense gas. An important factor in explaining the low SFR is the turbulent state of the star-forming gas, which seems to be dominated by rotational modes. However, the turbulence driving mechanism remains unclear. In this work, we investigate how the Galactic gravitational potential affects the turbulence in CMZ clouds. We focus on the CMZ cloud G0.253+0.016 (‘the Brick’), which is very quiescent and unlikely to be kinematically dominated by stellar feedback. We demonstrate that several kinematic properties of the Brick arise naturally in a cloud-scale hydrodynamics simulation, that takes into account the Galactic gravitational potential. These properties include the line-of-sight velocity distribution, the steepened size–linewidth relation, and the predominantly solenoidal nature of the turbulence. Within the simulation, these properties result from the Galactic shear in combination with the cloud’s gravitational collapse. This is a strong indication that the Galactic gravitational potential plays a crucial role in shaping the CMZ gas kinematics, and is a major contributor to suppressing the SFR, by inducing predominantly solenoidal turbulent modes

    The history of dynamics and stellar feedback revealed by the HI filamentary structure in the disk of the Milky Way

    Get PDF
    We present a study of the filamentary structure in the emission from the neutral atomic hydrogen (HI) at 21 cm across velocity channels in the 40 '' and 1.5-km s(-1) resolution position-position-velocity cube, resulting from the combination of the single-dish and interferometric observations in The HI/OH/recombination-line survey of the inner Milky Way. Using the Hessian matrix method in combination with tools from circular statistics, we find that the majority of the filamentary structures in the HI emission are aligned with the Galactic plane. Part of this trend can be assigned to long filamentary structures that are coherent across several velocity channels. However, we also find ranges of Galactic longitude and radial velocity where the HI filamentary structures are preferentially oriented perpendicular to the Galactic plane. These are located (i) around the tangent point of the Scutum spiral arm and the terminal velocities of the Molecular Ring, around l approximate to 28 degrees and v(LSR) approximate to 100 km s(-1), (ii) toward l approximate to 45 degrees and v(LSR) approximate to 50 km s(-1), (iii) around the Riegel-Crutcher cloud, and (iv) toward the positive and negative terminal velocities. A comparison with numerical simulations indicates that the prevalence of horizontal filamentary structures is most likely the result of large-scale Galactic dynamics and that vertical structures identified in (i) and (ii) may arise from the combined effect of supernova (SN) feedback and strong magnetic fields. The vertical filamentary structures in (iv) can be related to the presence of clouds from extra-planar HI gas falling back into the Galactic plane after being expelled by SNe. Our results indicate that a systematic characterization of the emission morphology toward the Galactic plane provides an unexplored link between the observations and the dynamical behavior of the interstellar medium, from the effect of large-scale Galactic dynamics to the Galactic fountains driven by SNe
    corecore