565 research outputs found

    Data reduction methods for single-mode optical interferometry - Application to the VLTI two-telescopes beam combiner VINCI

    Full text link
    The interferometric data processing methods that we describe in this paper use a number of innovative techniques. In particular, the implementation of the wavelet transform allows us to obtain a good immunity of the fringe processing to false detections and large amplitude perturbations by the atmospheric piston effect, through a careful, automated selection of the interferograms. To demonstrate the data reduction procedure, we describe the processing and calibration of a sample of stellar data from the VINCI beam combiner. Starting from the raw data, we derive the angular diameter of the dwarf star Alpha Cen A. Although these methods have been developed specifically for VINCI, they are easily applicable to other single-mode beam combiners, and to spectrally dispersed fringes.Comment: Accepted for publication in Astronomy & Astrophysics, 17 pages, 19 figure

    VLTI observations of IRS~3: The brightest compact MIR source at the Galactic Centre

    Full text link
    The dust enshrouded star IRS~3 in the central light year of our galaxy was partially resolved in a recent VLTI experiment. The presented observation is the first step in investigating both IRS~3 in particular and the stellar population of the Galactic Centre in general with the VLTI at highest angular resolution. We will outline which scientific issues can be addressed by a complete MIDI dataset on IRS~3 in the mid infrared.Comment: 4 pages, 3 figures, published in: The ESO Messenge

    Interferometric observations of eta Carinae with VINCI/VLTI

    Get PDF
    Context: The bright star eta Carinae is the most massive and luminous star in our region of the Milky Way. Though it has been extensively studied using many different techniques, its physical nature and the mechanism that led to the creation of the Homunculus nebula are still debated. Aims: We aimed at resolving the central engine of the eta Carinae complex in the near-infrared on angular scales of a few milliarcseconds. Methods: We used the VINCI instrument of the VLTI to recombine coherently the light from two telescopes in the K band. Results: We report a total of 142 visibility measurements of eta Car, part of which were analyzed by Van Boekel et al. (2003). These observations were carried out on projected baselines ranging from 8 to 112 meters in length, using either two 0.35 m siderostats or two 8-meter Unit Telescopes. These observations cover the November 2001 - January 2004 period. Conclusions: The reported visibility data are in satisfactory agreement with the recent results obtained with AMBER/VLTI by Weigelt et al. (2006), asuming that the flux of eta Car encircled within 70 mas reaches 56% of the total flux within 1400 mas, in the K band. We also confirm that the squared visibility curve of eta Car as a function of spatial frequency follows closely an exponential model.Comment: Accepted for publication in A&A as a Research not

    Integrated optics for astronomical interferometry - VI. Coupling the light of the VLTI in K band

    Get PDF
    Our objective is to prove that integrated optics (IO) is not only a good concept for astronomical interferometry but also a working technique with high performance. We used the commissioning data obtained with the dedicated K-band integrated optics two-telescope beam combiner which now replaces the fiber coupler MONA in the VLTI/VINCI instrument. We characterize the behaviour of this IO device and compare its properties to other single mode beam combiner like the previously used MONA fiber coupler. The IO combiner provides a high optical throughput, a contrast of 89% with a night-to-night stability of a few percent. Even if a dispersive phase is present, we show that it does not bias the measured Fourier visibility estimate. An upper limit of 0.005 for the cross-talk between linear polarization states has been measured. We take advantage of the intrinsic contrast stability to test a new astronomical prodecure for calibrating diameters of simple stars by simultaneously fitting the instrumental contrast and the apparent stellar diameters. This method reaches an accuracy with diameter errors of the order of previous ones but without the need of an already known calibrator. These results are an important step of integrated optics and paves the road to incoming imaging interferometer projects

    Ground-Based Coronagraphy with High Order Adaptive Optics

    Get PDF
    We summarize the theory of coronagraphic optics, and identify a dimensionless fine-tuning parameter, F, which we use to describe the Lyot stop size in the natural units of the coronagraphic optical train and the observing wavelength. We then present simulations of coronagraphs matched to adaptive optics (AO) systems on the Calypso 1.2m, Palomar Hale 5m and Gemini 8m telescopes under various atmospheric conditions, and identify useful parameter ranges for AO coronagraphy on these telescopes. Our simulations employ a tapered, high-pass filter in spatial frequency space to mimic the action of adaptive wavefront correction. We test the validity of this representation of AO correction by comparing our simulations with recent K-band data from the 241-channel Palomar Hale AO system and its dedicated PHARO science camera in coronagraphic mode.Comment: To appear in ApJ, May 2001 (28 pages, 10 figs

    First radius measurements of very low mass stars with the VLTI

    Get PDF
    e present 4 very low mass stars radii measured with the VLTI using the 2.2 microns VINCI test instrument. The observations were carried out during the commissioning of the 104-meter-baseline with two 8-meter-telescopes. We measure angular diameters of 0.7-1.5 mas with accuracies of 0.04-0.11 mas, and for spectral type ranging from M0V to M5.5V. We determine an empirical mass-radius relation for M dwarfs based on all available radius measurements. The observed relation agrees well with theoretical models at the present accuracy level, with possible discrepancy around 0.5-0.8 Msolar that needs to be confirmed. In the near future, dozens of M dwarfs radii will be measured with 0.1-1% accuracy, with the VLTI, thanks to the improvements expected from the near infrared instrument AMBER. This will bring strong observational constraints on both atmosphere and interior physics.Comment: Accepted for publication in Astronomy and Astrophysics Letters, 4 pages, 3 figure

    The environment of the fast rotating star Achernar - Thermal infrared interferometry with VLTI/MIDI and SIMECA modeling

    Full text link
    Context: As is the case of several other Be stars, Achernar is surrounded by an envelope, recently detected by near-IR interferometry. Aims: We search for the signature of circumstellar emission at distances of a few stellar radii from Achernar, in the thermal IR domain. Methods: We obtained interferometric observations on three VLTI baselines in the N band (8-13 mic), using the MIDI instrument. Results: From the measured visibilities, we derive the angular extension and flux contribution of the N band circumstellar emission in the polar direction of Achernar. The interferometrically resolved polar envelope contributes 13.4 +/- 2.5 % of the photospheric flux in the N band, with a full width at half maximum of 9.9 +/- 2.3 mas (~ 6 Rstar). This flux contribution is in good agreement with the photometric IR excess of 10-20% measured by fitting the spectral energy distribution. Due to our limited azimuth coverage, we can only establish an upper limit of 5-10% for the equatorial envelope. We compare the observed properties of the envelope with an existing model of this star computed with the SIMECA code. Conclusions: The observed extended emission in the thermal IR along the polar direction of Achernar is well reproduced by the existing SIMECA model. Already detected at 2.2mic, this polar envelope is most probably an observational signature of the fast wind ejected by the hot polar caps of the star.Comment: A&A Letter, in pres

    An Analysis of Fundamental Waffle Mode in Early AEOS Adaptive Optics Images

    Full text link
    Adaptive optics (AO) systems have significantly improved astronomical imaging capabilities over the last decade, and are revolutionizing the kinds of science possible with 4-5m class ground-based telescopes. A thorough understanding of AO system performance at the telescope can enable new frontiers of science as observations push AO systems to their performance limits. We look at recent advances with wave front reconstruction (WFR) on the Advanced Electro-Optical System (AEOS) 3.6 m telescope to show how progress made in improving WFR can be measured directly in improved science images. We describe how a "waffle mode" wave front error (which is not sensed by a Fried geometry Shack-Hartmann wave front sensor) affects the AO point-spread function (PSF). We model details of AEOS AO to simulate a PSF which matches the actual AO PSF in the I-band, and show that while the older observed AEOS PSF contained several times more waffle error than expected, improved WFR techniques noticeably improve AEOS AO performance. We estimate the impact of these improved WFRs on H-band imaging at AEOS, chosen based on the optimization of the Lyot Project near-infrared coronagraph at this bandpass.Comment: 15 pages, 11 figures, 1 table; to appear in PASP, August 200

    VLTI/MIDI observations of 7 classical Be stars

    Get PDF
    We measured the mid-infrared extension of the gaseous disk surrounding seven Be stars in order to constrain the geometry of their circumstellar environments and to try to infer physical parameters characterizing these disks. We used the VLTI/MIDI instrument with baselines up to 130 m to obtain an angular resolution of about 15 mas in the N band and compared our results with previous K band measurements obtained with the VLTI/AMBER instrument and/or the CHARA interferometer. We obtained one calibrated visibility measurement for each of the four stars, p Car, zeta Tau, kappa CMa, and alpha Col, two for delta Cen and beta CMi, and three for alpha Ara. Almost all targets remain unresolved even with the largest VLTI baseline of 130m, evidence that their circumstellar disk extension is less than 10 mas. The only exception is alpha Ara, which is clearly resolved and well-fitted by an elliptical envelope with a major axis a=5.8+-0.8mas and an axis ratio a/b=2.4+-1 at 8 microns. This extension is similar to the size and flattening measured with the VLTI/AMBER instrument in the K band at 2 microns. The size of the circumstellar envelopes for these classical Be stars does not seem to vary strongly on the observed wavelength between 8 and 12microns. Moreover, the size and shape of Alpha Ara's disk is almost identical at 2, 8, and 12microns
    corecore