30 research outputs found

    Characterization of multifocal T2*-weighted MRI hypointensities in the basal ganglia of elderly, community-dwelling subjects

    Get PDF
    AbstractMultifocal T2*-weighted (T2*w) hypointensities in the basal ganglia, which are believed to arise predominantly from mineralized small vessels and perivascular spaces, have been proposed as a biomarker for cerebral small vessel disease. This study provides baseline data on their appearance on conventional structural MRI for improving and automating current manual segmentation methods. Using a published thresholding method, multifocal T2*w hypointensities were manually segmented from whole brain T2*w volumes acquired from 98 community-dwelling subjects in their early 70s. Connected component analysis was used to derive the average T2*w hypointensity count and load per basal ganglia nucleus, as well as the morphology of their connected components, while nonlinear spatial probability mapping yielded their spatial distribution. T1-weighted (T1w), T2-weighted (T2w) and T2*w intensity distributions of basal ganglia T2*w hypointensities and their appearance on T1w and T2w MRI were investigated to gain further insights into the underlying tissue composition. In 75/98 subjects, on average, 3 T2*w hypointensities with a median total volume per intracranial volume of 50.3ppm were located in and around the globus pallidus. Individual hypointensities appeared smooth and spherical with a median volume of 12mm3 and median in-plane area of 4mm2. Spatial probability maps suggested an association between T2*w hypointensities and the point of entry of lenticulostriate arterioles into the brain parenchyma. T1w and T2w and especially the T2*w intensity distributions of these hypointensities, which were negatively skewed, were generally not normally distributed indicating an underlying inhomogeneous tissue structure. Globus pallidus T2*w hypointensities tended to appear hypo- and isointense on T1w and T2w MRI, whereas those from other structures appeared iso- and hypointense. This pattern could be explained by an increased mineralization of the globus pallidus. In conclusion, the characteristic spatial distribution and appearance of multifocal basal ganglia T2*w hypointensities in our elderly cohort on structural MRI appear to support the suggested association with mineralized proximal lenticulostriate arterioles and perivascular spaces

    Polarization profiles of electron-beam polarized VDF-TrFE copolymer films

    No full text
    In order to understand more clearly the poling mechanism in ferroelectric polymers, the PPS-technique was applied to copolymer films of vinylidenefluoride with trifluoroethylene P(VDF-TrFE), poled by a focused monoenergetic electron beam. Charges were injected in a well-defined way into the polymer films and thus provided information on the influence of externally introduced electrical charges on the poling process in ferroelectric polymers. The electron beam poling of P(VDF-TrFE) films is shown to produce very high values of polarization up to 180 mC/m2, which exceeds those produced in β-PVDF by electron irradiation by a factor of three. The distribution of the polarization across the film thickness is rather asymmetric, especially for samples irradiated with 20- and 30-KeV electrons. This may be caused by the rising electrical conductivity in samples with increasing electron energy. The annealing of the copolymer films before the poling procedure leads to a systematic increase of the polarization, with T a having its steepest rise around Tc

    Influence of the Al-Si Alloy Formation in narrow dielectric barrier openings on the specific contact resistance

    No full text
    A full area Al-alloyed back surface field layer usually forms the rear side of standard p-type Si solar cells. However, a dielectric rear surface passivation with only small local contact openings has significant advantages over the standard fully covered Al back contact, and enables higher efficiencies on thinner wafers. This article presents a specific analysis of the formation of small localized contacts between Al and Si. We observe that the contact resistivity of screen printed Al fingers depends on the homogeneity of the Al-Si alloy formation below the contacts. The contact resistivity decreases when reducing the contact area, due to a more homogeneous alloy formation. The optimal contact formation is achieved with contact areas smaller than 50 – 80 mm in diameter
    corecore