98 research outputs found

    Analyzing the EGEE production grid workload: application to jobs submission optimization

    Get PDF
    International audienceGrids reliability remains an order of magnitude below clusters on production infrastructures. This work is aims at improving grid application performances by improving the job submission system. A stochastic model, capturing the behavior of a complex grid workload management system is proposed. To instantiate the model, detailed statistics are extracted from dense grid activity traces. The model is exploited in a simple job resubmission strategy. It provides quantitative inputs to improve job submission performance and it enables quantifying the impact of faults and outliers on grid operations

    Multi-modality image simulation with the Virtual Imaging Platform: Illustration on cardiac echography and MRI

    Get PDF
    International audienceMedical image simulation is useful for biological modeling, image analysis, and designing new imaging devices but it is not widely available due to the complexity of simulators, the scarcity of object models, and the heaviness of the associated computations. This paper presents the Virtual Imaging Platform, an openly-accessible web platform for multi-modality image simulation. The integration of simulators and models is described and exemplified on simulated cardiac MRIs and ultrasonic images

    Fine-Grain Interoperability of Scientific Workflows in Distributed Computing Infrastructures

    Get PDF
    Today there exist a wide variety of scientific workflow management systems, each designed to fulfill the needs of a certain scientific community. Unfortunately, once a workflow application has been designed in one particular system it becomes very hard to share it with users working with different systems. Portability of workflows and interoperability between current systems barely exists. In this work, we present the fine-grained interoperability solution proposed in the SHIWA European project that brings together four representative European workflow systems: ASKALON, MOTEUR, WS-PGRADE, and Triana. The proposed interoperability is realised at two levels of abstraction: abstract and concrete. At the abstract level, we propose a generic Interoperable Workflow Intermediate Representation (IWIR) that can be used as a common bridge for translating workflows between different languages independent of the underlying distributed computing infrastructure. At the concrete level, we propose a bundling technique that aggregates the abstract IWIR representation and concrete task representations to enable workflow instantiation, execution and scheduling. We illustrate case studies using two real-workflow applications designed in a native environment and then translated and executed by a foreign workflow system in a foreign distributed computing infrastructure. © 2013 Springer Science+Business Media Dordrecht

    Reproducibility of scientific workflows execution using cloud-aware provenance (ReCAP)

    Get PDF
    © 2018, Springer-Verlag GmbH Austria, part of Springer Nature. Provenance of scientific workflows has been considered a mean to provide workflow reproducibility. However, the provenance approaches adopted so far are not applicable in the context of Cloud because the provenance trace lacks the Cloud information. This paper presents a novel approach that collects the Cloud-aware provenance and represents it as a graph. The workflow execution reproducibility on the Cloud is determined by comparing the workflow provenance at three levels i.e., workflow structure, execution infrastructure and workflow outputs. The experimental evaluation shows that the implemented approach can detect changes in the provenance traces and the outputs produced by the workflow

    The MNI data-sharing and processing ecosystem

    Get PDF
    AbstractNeuroimaging has been facing a data deluge characterized by the exponential growth of both raw and processed data. As a result, mining the massive quantities of digital data collected in these studies offers unprecedented opportunities and has become paramount for today's research. As the neuroimaging community enters the world of “Big Data”, there has been a concerted push for enhanced sharing initiatives, whether within a multisite study, across studies, or federated and shared publicly. This article will focus on the database and processing ecosystem developed at the Montreal Neurological Institute (MNI) to support multicenter data acquisition both nationally and internationally, create database repositories, facilitate data-sharing initiatives, and leverage existing software toolkits for large-scale data processing

    Sharing brain mapping statistical results with the neuroimaging data model

    Get PDF
    Only a tiny fraction of the data and metadata produced by an fMRI study is finally conveyed to the community. This lack of transparency not only hinders the reproducibility of neuroimaging results but also impairs future meta-analyses. In this work we introduce NIDM-Results, a format specification providing a machine-readable description of neuroimaging statistical results along with key image data summarising the experiment. NIDM-Results provides a unified representation of mass univariate analyses including a level of detail consistent with available best practices. This standardized representation allows authors to relay methods and results in a platform-independent regularized format that is not tied to a particular neuroimaging software package. Tools are available to export NIDM-Result graphs and associated files from the widely used SPM and FSL software packages, and the NeuroVault repository can import NIDM-Results archives. The specification is publically available at: http://nidm.nidash.org/specs/nidm-results.html

    Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure

    Get PDF
    We present a study of multiple sclerosis segmentation algorithms conducted at the international MICCAI 2016 challenge. This challenge was operated using a new open-science computing infrastructure. This allowed for the automatic and independent evaluation of a large range of algorithms in a fair and completely automatic manner. This computing infrastructure was used to evaluate thirteen methods of MS lesions segmentation, exploring a broad range of state-of-theart algorithms, against a high-quality database of 53 MS cases coming from four centers following a common definition of the acquisition protocol. Each case was annotated manually by an unprecedented number of seven different experts. Results of the challenge highlighted that automatic algorithms, including the recent machine learning methods (random forests, deep learning, …), are still trailing human expertise on both detection and delineation criteria. In addition, we demonstrate that computing a statistically robust consensus of the algorithms performs closer to human expertise on one score (segmentation) although still trailing on detection scores

    Best practices in data analysis and sharing in neuroimaging using MRI

    Get PDF
    Given concerns about the reproducibility of scientific findings, neuroimaging must define best practices for data analysis, results reporting, and algorithm and data sharing to promote transparency, reliability and collaboration. We describe insights from developing a set of recommendations on behalf of the Organization for Human Brain Mapping, and identify barriers that impede these practices, including how the discipline must change to fully exploit the potential of the world’s neuroimaging data
    corecore