85 research outputs found

    Concordance between CA-125 and RECIST progression in patients with germline BRCA-mutated platinum-sensitive relapsed ovarian cancer treated in the SOLO2 trial with olaparib as maintenance therapy after response to chemotherapy

    Get PDF
    BACKGROUND: Limited evidence exists to support CA-125 as a valid surrogate biomarker for progression in patients with ovarian cancer on maintenance PARP inhibitor (PARPi) therapy. We aimed to assess the concordance between CA-125 and Response Evaluation Criteria in Solid Tumours (RECIST) criteria for progression in patients with BRCA mutations on maintenance PARPi or placebo. METHODS: We extracted data on progression as defined by Gynecologic Cancer InterGroup CA-125, investigator- and independent central-assessed RECIST from the SOLO2/ENGOT-ov21(NCT01874353) trial. We excluded those with progression other than by RECIST, progression on date of randomisation, and no repeat CA-125 beyond baseline. We evaluated the concordance between CA-125 progression and RECIST progression, and assessed the negative (NPV) and positive predictive value (PPV). RESULTS: Of 295 randomised patients, 275 (184 olaparib, 91 placebo) were included. 171 patients had investigator-assessed RECIST progression. Of 80 patients with CA-125 progression, 77 had concordant RECIST progression (PPV 96%, 95% confidence interval 90-99%). Of 195 patients without CA-125 progression, 94 had RECIST progression (NPV 52%, 45-59%). Within treatment arms, PPV was similar (olaparib: 95% [84-99%], placebo: 97% [87-100%]) but NPV was lower in patients on placebo (olaparib: 60% [52-68%], placebo: 30% [20-44%]). Of 94 patients with RECIST but without CA-125 progression, 64 (68%) had CA-125 that remained within normal range. We observed similar findings using independent-assessed RECIST. CONCLUSIONS: Almost half the patients without CA-125 progression had RECIST progression, and most of these had CA-125 within the normal range. Regular computed tomography imaging should be considered as part of surveillance in patients treated with or without maintenance olaparib rather than relying on CA-125 alone

    Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial

    Get PDF
    Background: Rucaparib, a poly(ADP-ribose) polymerase inhibitor, has anticancer activity in recurrent ovarian carcinoma harbouring a BRCA mutation or high percentage of genome-wide loss of heterozygosity. In this trial we assessed rucaparib versus placebo after response to second-line or later platinum-based chemotherapy in patients with high-grade, recurrent, platinum-sensitive ovarian carcinoma. Methods: In this randomised, double-blind, placebo-controlled, phase 3 trial, we recruited patients from 87 hospitals and cancer centres across 11 countries. Eligible patients were aged 18 years or older, had a platinum-sensitive, high-grade serous or endometrioid ovarian, primary peritoneal, or fallopian tube carcinoma, had received at least two previous platinum-based chemotherapy regimens, had achieved complete or partial response to their last platinum-based regimen, had a cancer antigen 125 concentration of less than the upper limit of normal, had a performance status of 0–1, and had adequate organ function. Patients were ineligible if they had symptomatic or untreated central nervous system metastases, had received anticancer therapy 14 days or fewer before starting the study, or had received previous treatment with a poly(ADP-ribose) polymerase inhibitor. We randomly allocated patients 2:1 to receive oral rucaparib 600 mg twice daily or placebo in 28 day cycles using a computer-generated sequence (block size of six, stratified by homologous recombination repair gene mutation status, progression-free interval after the penultimate platinum-based regimen, and best response to the most recent platinum-based regimen). Patients, investigators, site staff, assessors, and the funder were masked to assignments. The primary outcome was investigator-assessed progression-free survival evaluated with use of an ordered step-down procedure for three nested cohorts: patients with BRCA mutations (carcinoma associated with deleterious germline or somatic BRCA mutations), patients with homologous recombination deficiencies (BRCA mutant or BRCA wild-type and high loss of heterozygosity), and the intention-to-treat population, assessed at screening and every 12 weeks thereafter. This trial is registered with ClinicalTrials.gov, number NCT01968213; enrolment is complete. Findings: Between April 7, 2014, and July 19, 2016, we randomly allocated 564 patients: 375 (66%) to rucaparib and 189 (34%) to placebo. Median progression-free survival in patients with a BRCA-mutant carcinoma was 16·6 months (95% CI 13·4–22·9; 130 [35%] patients) in the rucaparib group versus 5·4 months (3·4–6·7; 66 [35%] patients) in the placebo group (hazard ratio 0·23 [95% CI 0·16–0·34]; p<0·0001). In patients with a homologous recombination deficient carcinoma (236 [63%] vs 118 [62%]), it was 13·6 months (10·9–16·2) versus 5·4 months (5·1–5·6; 0·32 [0·24–0·42]; p<0·0001). In the intention-to-treat population, it was 10·8 months (8·3–11·4) versus 5·4 months (5·3–5·5; 0·36 [0·30–0·45]; p<0·0001). Treatment-emergent adverse events of grade 3 or higher in the safety population (372 [99%] patients in the rucaparib group vs 189 [100%] in the placebo group) were reported in 209 (56%) patients in the rucaparib group versus 28 (15%) in the placebo group, the most common of which were anaemia or decreased haemoglobin concentration (70 [19%] vs one [1%]) and increased alanine or aspartate aminotransferase concentration (39 [10%] vs none). Interpretation: Across all primary analysis groups, rucaparib significantly improved progression-free survival in patients with platinum-sensitive ovarian cancer who had achieved a response to platinum-based chemotherapy. ARIEL3 provides further evidence that use of a poly(ADP-ribose) polymerase inhibitor in the maintenance treatment setting versus placebo could be considered a new standard of care for women with platinum-sensitive ovarian cancer following a complete or partial response to second-line or later platinum-based chemotherapy. Funding: Clovis Oncology

    Factors for Hematopoietic Toxicity of Carboplatin: Refining the Targeting of Carboplatin Systemic Exposure

    Get PDF
    Purpose Area under the curve (AUC) dosing is routinely carried out for carboplatin, but the chosen target AUC values remain largely empirical. This multicenter pharmacokinetic-pharmacodynamic (PK-PD) study was performed to determine the covariates involved in the interindividual variability of carboplatin hematotoxicity that should be considered when choosing individual target AUCs.Patients and Methods Three hundred eighty-three patients received carboplatin as part of established regimens. A semi-physiologic population PK-PD model was applied to describe separately the time course of absolute neutrophil and platelet counts using NONMEM software. The plasma ultrafiltrable carboplatin concentration (CCarbo) was assumed to inhibit the proliferation of blood cell precursors through a linear model: drug effect = slope × CCarbo. The slope corresponds to the patients\u27 sensitivity to carboplatin hematotoxicity. The relationships between the patients\u27 sensitivity to the neutropenic or thrombopenic effects of carboplatin and various covariates, including associated chemotherapies, demographic, biologic, and pharmacogenetic data, were studied. Results The sensitivity of carboplatin-induced thrombocytopenia decreased in the case of concomitant paclitaxel chemotherapy (slope decreased by 24%), whereas it increased with coadministration of etoposide and gemcitabine (slope increased by 45% and 133%, respectively). For neutropenia, the sensitivity increased when carboplatin was combined with other cytotoxics (slope increased by 76%). Conclusion This study provides useful information to clinicians to better estimate the hematopoietic toxicity of carboplatin and thus choose more rationally carboplatin target AUCs as a function of pretreatment or concomitantly administered chemotherapies. For example, an AUC of 5 mg/mL · min is associated with a risk of grade 3 or 4 thrombocytopenia of 2% in combination with paclitaxel versus 38% with gemcitabine in a non-pretreated patient

    European experts consensus: BRCA/homologous recombination deficiency testing in first-line ovarian cancer

    Get PDF
    Background: Homologous recombination repair (HRR) enables fault-free repair of double-stranded DNA breaks. HRR deficiency is predicted to occur in around half of high-grade serous ovarian carcinomas. Ovarian cancers harbouring HRR deficiency typically exhibit sensitivity to poly-ADP ribose polymerase inhibitors (PARPi). Current guidelines recommend a range of approaches for genetic testing to identify predictors of sensitivity to PARPi in ovarian cancer and to identify genetic predisposition. Design: To establish a European-wide consensus for genetic testing (including the genetic care pathway), decision making and clinical management of patients with recently diagnosed advanced ovarian cancer, and the validity of biomarkers to predict the effectiveness of PARPi in the first-line setting. The collaborative European experts’ consensus group consisted of a steering committee (n = 14) and contributors (n = 84). A (modified) Delphi process was used to establish consensus statements based on a systematic literature search, conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Results: A consensus was reached on 34 statements amongst 98 caregivers (including oncologists, pathologists, clinical geneticists, genetic researchers, and patient advocates). The statements concentrated on (i) the value of testing for BRCA1/2 mutations and HRR deficiency testing, including when and whom to test; (ii) the importance of developing new and better HRR deficiency tests; (iii) the importance of germline non-BRCA HRR and mismatch repair gene mutations for predicting familial risk, but not for predicting sensitivity to PARPi, in the first-line setting; (iv) who should be able to inform patients about genetic testing, and what training and education should these caregivers receive. Conclusion: These consensus recommendations, from a multidisciplinary panel of experts from across Europe, provide clear guidance on the use of BRCA and HRR deficiency testing for recently diagnosed patients with advanced ovarian cancer

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM (-/-) patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers

    Get PDF
    Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10−8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    The Influence of Number and Timing of Pregnancies on Breast Cancer Risk for Women With BRCA1 or BRCA2 Mutations

    Get PDF
    International audienceBACKGROUND:Full-term pregnancy (FTP) is associated with a reduced breast cancer (BC) risk over time, but women are at increased BC risk in the immediate years following an FTP. No large prospective studies, however, have examined whether the number and timing of pregnancies are associated with BC risk for BRCA1 and BRCA2 mutation carriers.METHODS:Using weighted and time-varying Cox proportional hazards models, we investigated whether reproductive events are associated with BC risk for mutation carriers using a retrospective cohort (5707 BRCA1 and 3525 BRCA2 mutation carriers) and a prospective cohort (2276 BRCA1 and 1610 BRCA2 mutation carriers), separately for each cohort and the combined prospective and retrospective cohort.RESULTS:For BRCA1 mutation carriers, there was no overall association with parity compared with nulliparity (combined hazard ratio [HRc] = 0.99, 95% confidence interval [CI] = 0.83 to 1.18). Relative to being uniparous, an increased number of FTPs was associated with decreased BC risk (HRc = 0.79, 95% CI = 0.69 to 0.91; HRc = 0.70, 95% CI = 0.59 to 0.82; HRc = 0.50, 95% CI = 0.40 to 0.63, for 2, 3, and ≥4 FTPs, respectively, P trend < .0001) and increasing duration of breastfeeding was associated with decreased BC risk (combined cohort P trend = .0003). Relative to being nulliparous, uniparous BRCA1 mutation carriers were at increased BC risk in the prospective analysis (prospective hazard ration [HRp] = 1.69, 95% CI = 1.09 to 2.62). For BRCA2 mutation carriers, being parous was associated with a 30% increase in BC risk (HRc = 1.33, 95% CI = 1.05 to 1.69), and there was no apparent decrease in risk associated with multiparity except for having at least 4 FTPs vs. 1 FTP (HRc = 0.72, 95% CI = 0.54 to 0.98).CONCLUSIONS:These findings suggest differential associations with parity between BRCA1 and BRCA2 mutation carriers with higher risk for uniparous BRCA1 carriers and parous BRCA2 carriers
    • …
    corecore