28 research outputs found

    Increased levels of protein- and lipid-bound sialic acids in the renal cortex of rats injected with low doses of gentamicin.

    No full text
    Administration of the aminoglycoside antibiotic, gentamicin, even at therapeutic doses, causes renal lysosomal phospholipidosis. We now report that protein- and lipid-bound sialic acid levels are increased significantly in a time-dependent fashion in the renal cortex of rats injected with gentamicin (10 mg/kg body wt. per day) for 4-10 days and a significant relationship could be observed between these two parameters. This elevation was not due to tissue regeneration, since it was not observed in cisplatin-treated animals

    Tumour necrosis factor receptor-1 associated periodic syndrome (TRAPS)-related AA amyloidosis: a national case series and systematic review

    No full text
    International audienceAbstract Objectives TNF receptor-1-associated periodic syndrome (TRAPS) is a rare autosomal dominant autoinflammatory disorder associated with mutations in the TNF receptor super family 1 A (TNFRSF1A) gene. AA amyloidosis (AA) is the most severe complication of TRAPS. To study the occurrence and prognosis of AA in TRAPS, we conducted a retrospective study of all French cases and a systematic literature review. Methods This case series includes TRAPS patients followed by our centre from 2000 to 2020 presenting with histologically confirmed AA. We conducted a systematic literature review on the PubMed and EMBASE databases for articles published up to February 2021 following the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines and using the keywords: amyloidoisis, amyloid, TNF receptor-associated periodic syndrome, TNF receptor-associated periodic syndrome, tumor necrosis factor receptor-associated periodic syndrome, TRAPS, TNFRSF1A, familial hibernian fever and hibernian familial fever. Results A total of 41 TRAPS with AA were studied: three new patients and 38 cases from the literature. AA diagnosis preceded that of TRAPS in 96% of cases, and 17/36 (47%) required renal replacement therapy. Death occurred in 5/36 (14%) with a median follow-up of 23 months. Effect of biologics on AA were available for 21 regimens in 19 patients: 10 improved renal function, seven stabilized and four worsened. Four patients (36% of transplanted patients) relapse AA on kidney graft (only one under etanercept). Conclusion TRAPS is revealed by AA in most cases. Therefore, clinical features of TRAPS should be screened for in AA patients. IL-1 antagonist can help to normalize inflammation and to preserve renal function

    Transport of Arylsulfatase A across the Blood-Brain Barrier in Vitro*

    Get PDF
    Enzyme replacement therapy is an option to treat lysosomal storage diseases caused by functional deficiencies of lysosomal hydrolases as intravenous injection of therapeutic enzymes can correct the catabolic defect within many organ systems. However, beneficial effects on central nervous system manifestations are very limited because the blood-brain barrier (BBB) prevents the transfer of enzyme from the circulation to the brain parenchyma. Preclinical studies in mouse models of metachromatic leukodystrophy, however, showed that arylsulfatase A (ASA) is able to cross the BBB to some extent, thus reducing lysosomal storage in brain microglial cells. The present study aims to investigate the routing of ASA across the BBB and to improve the transfer in vitro using a well established cell culture model consisting of primary porcine brain capillary endothelial cells cultured on Transwell filter inserts. Passive apical-to-basolateral ASA transfer was observed, which was not saturable up to high ASA concentrations. No active transport could be determined. The passive transendothelial transfer was, however, charge-dependent as reduced concentrations of negatively charged monosaccharides in the N-glycans of ASA or the addition of polycations increased basolateral ASA levels. Adsorptive transcytosis is therefore considered to be the major transport pathway. Partial inhibition of the transcellular ASA transfer by mannose 6-phosphate indicated a second route depending on the insulin-like growth factor II/mannose 6-phosphate receptor, MPR300. We conclude that cationization of ASA and an increase of the mannose 6-phosphate content of the enzyme may promote blood-to-brain transfer of ASA, thus leading to an improved therapeutic efficacy of enzyme replacement therapy behind the BBB
    corecore