125 research outputs found
Response of dust on thermal emission spectra observed by Planetary Fourier Spectrometer (PFS) on-board Mars Express (MEX)
38-44The thermal emission spectra have provided many useful insights about the Martian atmosphere and surface. The interpretation of the thermal emission spectra can give us information about atmospheric temperature, pressure, mineralogy and presence of atmospheric constituents including their isotopes. In the present work, we have analysed the thermal emission data for dust storm season on Mars. The signature of dust in the thermal emission spectra for Martian Year (MY) 28 confirm the presence (Ls=280o and 300o) and the absence (Ls=240o and 320o) of the dust storm at latitude range 0o-10oS, 10o-20oS and 20o-30oS. We have compared our results with earlier mission data with thermal emission measurements made by Planetary Fourier Spectrometer (PFS) on-board Mars Express (MEX) between wave numbers 250-1400 cm-1. We have observed features at wave numbers 600-750 cm-1 and 900-1200 cm-1 due to absorptions by CO2 and dust respectively. We have obtained brightness temperatures from thermal emission spectra by inverting the Planck function. The maximum brightness temperature ~280o K was measured at Ls=240o when Mars received a large amount of solar radiation at perihelion. The minimum brightness temperature ~ 220o K was observed at Ls=320o in the absence of dust storm. In presence of dust storm, thermal emission spectra and brightness temperatures were reduced by factors of ~ 3.0 and ~1.3, respectively, between wave numbers 900-1200 cm-1 in comparison to that observed in absence of dust storm
Melanocortin-4 Receptor and Lipocalin 2 Gene Variants in Spanish Children with Abdominal Obesity: Effects on BMI-SDS after a Lifestyle Intervention
Mutations leading to a reduced function of the melanocortin-4 receptor (MC4R) exert a major gene effect on extreme obesity. Recently it was shown that the bone derived hormone lipocalin 2 (LCN2) binds to the MC4R and activates a MC4R dependent anorexigenic pathway. We identified mutations in both genes and screened the effects of MC4R and LCN2 mutations on eating behavior and weight change after a lifestyle intervention. One hundred and twelve children (11.24 ± 2.6 years, BMI-SDS 2.91 ± 1.07) with abdominal obesity participated in a lifestyle intervention. MC4R and LCN2 coding regions were screened by Sanger sequencing. Eating behavior was assessed at baseline with the Children Eating Behavior Questionnaire (CEBQ). We detected three previously described non-synonymous MC4R variants (Glu42Lys, Thr150Ile, and Arg305Gln) and one non-synonymous polymorphism (Ile251Leu). Regarding LCN2, one known non-synonymous variant (Thr124Met) was detected. Eating behavior was described in carriers of the MC4R and LCN2 mutation and in non-carriers. MC4R and LCN2 mutations were detected in 2.42% and 0.84%, respectively, of Spanish children with abdominal obesity. A number of subjects with functional mutation variants in MC4R and LCN2 were able to achieve a reduction in BMI-SDS after a lifestyle intervention
Dust and Clouds on Mars: The View from Mars Express
European Space Agency’s Mars Express (MEX) has been orbiting Mars for 20 years and its instruments have provided a plethora of observations of atmospheric dust and clouds. These observations have been analysed to produce many unique views of the processes leading to dust lifting and cloud formation, and a full picture of the climatologies of dust and clouds has emerged. Moreover, the orbit of MEX enables viewing the planet at many local times, giving a unique access to the diurnal variations of the atmosphere. This article provides an overview of the observations of dust and clouds on Mars by MEX, complemented by the Trace Gas Orbiter that has been accompanying MEX on orbit for some years
The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter
The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described
Explanation for the increase in high altitude water on Mars observed by NOMAD during the 2018 global dust storm
The Nadir and Occultation for MArs Discovery (NOMAD) instrument on board ExoMars Trace Gas Orbiter (TGO) measured a large increase in water vapor at altitudes in the range of 40‐100 km during the 2018 global dust storm on Mars. Using a three‐dimensional general circulation model, we examine the mechanism responsible for the enhancement of water vapor in the upper atmosphere. Experiments with different prescribed vertical profiles of dust show that when more dust is present higher in the atmosphere the temperature increases and the amount of water ascending over the tropics is not limited by saturation until reaching heights of 70‐100 km. The warmer temperatures allow more water to ascend to the mesosphere. Photochemical simulations show a strong increase in high‐altitude atomic hydrogen following the high‐altitude water vapor increase by a few days
The challenge and scientific application of the CO2 4.3 um atmospheric limb emission of Mars
The atmospheric fluorescent emissions of CO2 at 4.3- um have been observed in the daytime upper atmosphere of Mars from a limb geometry by the instruments OMEGA and PFS on board Mars Express [1, 8]. Initial analysis using non-local thermodynamic equilibrium (NLTE) models show that the emissions are well understood [7, 3, 6]. Yet they have not been exploited to derive important thermospheric parameters, like CO2 densities and temperatures. Our major goals are to improve current NLTE models with a joint study of OMEGA and PFS data, and to build an ambitious state-of-the-art NLTE retreival scheme for Mars. Recent progress has been made in these directions on Mars, Venus and Earth. We will present a summary of these efforts and the difficulties and expectatives for its application to the Mars Express dat
Sensitive search of CH4 on Mars by SOFIA/EXES
We present the results of our sensitive search of CH4 on Mars using the Echelon-Cross-Echelle Spectrograph (EXES) onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA)
The Planetary Fourier Spectrometer (PFS) onboard the European Mars Express mission
International audience; The Planetary Fourier Spectrometer (PFS) for the Mars Express mission is an infrared spectrometer optimised for atmospheric studies. This instrument has a short wave (SW) channel that covers the spectral range from 1700 to 8200.0cm-1 (1.2- 5.5mum) and a long-wave (LW) channel that covers 250- 1700cm-1 (5.5- 45mum). Both channels have a uniform spectral resolution of 1.3cm-1. The instrument field of view FOV is about 1.6o (FWHM) for the Short Wavelength channel (SW) and 2.8o (FWHM) for the Long Wavelength channel (LW) which corresponds to a spatial resolution of 7 and 12 km when Mars is observed from an height of 250 km. PFS can provide unique data necessary to improve our knowledge not only of the atmosphere properties but also about mineralogical composition of the surface and the surface-atmosphere interaction. The SW channel uses a PbSe detector cooled to 200-220 K while the LW channel is based on a pyroelectric ( LiTaO3) detector working at room temperature. The intensity of the interferogram is measured every 150 nm of physical mirrors displacement, corresponding to 600 nm optical path difference, by using a laser diode monochromatic light interferogram (a sine wave), whose zero crossings control the double pendulum motion. PFS works primarily around the pericentre of the orbit, only occasionally observing Mars from large distances. Each measurements take 4 s, with a repetition time of 8.5 s. By working roughly 0.6 h around pericentre, a total of 330 measurements per orbit will be acquired 270 looking at Mars and 60 for calibrations. PFS is able to take measurements at all local times, facilitating the retrieval of surface temperatures and atmospheric vertical temperature profiles on both the day and the night side
Expected Performances of the NOMAD/ExoMars instrument
NOMAD (Nadir and Occultation for MArs Discovery) is one of the four instruments on board the ExoMars Trace Gas Orbiter, scheduled for launch in March 2016. It consists of a suite of three high-resolution spectrometers – SO (Solar Occultation), LNO (Limb, Nadir and Occultation) and UVIS (Ultraviolet and Visible Spectrometer). Based upon the characteristics of the channels and the values of Signal-to-Noise Ratio obtained from radiometric models discussed in [Vandaele et al., Optics Express, 2015] and [Thomas et al., Optics Express, 2015], the expected performances of the instrument in terms of sensitivity to detection have been investigated. The analysis led to the determination of detection limits for 18 molecules, namely CO, H2O, HDO, C2H2, C2H4, C2H6, H2CO, CH4, SO2, H2S, HCl, HCN, HO2, NH3, N2O, NO2, OCS, O3. NOMAD should have the ability to measure methane concentrations <25 parts per trillion (ppt) in solar occultation mode, and 11 parts per billion in nadir mode. Occultation detections as low as 10 ppt could be made if spectra are averaged [Drummond et al., Planetary Space and Science, 2011]. Results have been obtained for all three channels in nadir and in solar occultation
- …