301 research outputs found

    Intervenções de enfermagem na prevenção de skin tears / Skin tears prevention nursing interventions

    Get PDF
    A skin tears é um tipo ferida traumática resultante de fricção ou de fricção e cisalhamento, o que leva a separação da epiderme da derme ou separando ambas das estruturas de sustentação. É de pouco conhecimento no Brasil, e por vezes, chamada de laceração pelo fato de não possuir nomenclatura própria. Objetivo: descrever as intervenções de enfermagem envolvidas na prevenção e tratamento das skin tears. Método: trata-se de estudo descritivo que se deu por meio de revisão integrativa, a partir da análise da produção científica de enfermagem. A coleta do material se deu nos meses de novembro/dezembro de 2018 e janeiro/2019, cujo levantamento foi realizado nas bases Lilacs, Scielo e PubMed e demais alocadas na Bireme. Resultados: dentre as intervenções de enfermagem destaca-se, a realização de curativo ideal, que deve ser simples, rápido, sem dor, confortável e facilmente removível, além de cuidados com a lesão, limpeza com solução fisiológica 0,9%, além de examinar a lesão a cada troca do curativo. Conclusão: cabe ao enfermeiro, realizar avaliação minuciosa, tanto do paciente com risco de desenvolver as feridas, quanto dos pacientes que apresentam, efetivando a prática com base em conhecimento científico e baseado em evidências

    Educação em saúde com adolescentes na escola: relato de experiência / Health education with teenagers ate school: experience report

    Get PDF
    Este estudo visa relatar experiência vivenciada em escolas públicas do Rio de Janeiro - RJ, onde foram desenvolvidas questões relacionadas aos primeiros-socorros e higiene do corpo humano, além de temas ligados a adolescência, como drogas, violência e gravidez. Objetivo: descrever a prática de educação em saúde, com base no conhecimento teórico da disciplina de saúde coletiva. Método: pesquisa de cunho qualitativo-descritiva, do tipo relato de experiência. Palestras e dinâmicas extraclasses foram utilizadas para fixar os conteúdos como: jogos educativos, questionários e dramatizações, sendo essas atividades lúdicas e aproximadoras do contexto escolar. Conclusão: foi possível compreender as competências que o enfermeiro deve desempenhar, atuando também como educador, visando à educação como canal condutor de desenvolver suas potencialidades, em sua condição de sujeito dinâmico, além de aplicar estratégias eficientes para contribuir com a formação e compreensão da saúde da sua comunidade

    LIME -- a gas TPC prototype for directional Dark Matter search for the CYGNO experiment

    Full text link
    The CYGNO experiment aims at the development of a large gaseous TPC with GEM-based amplification and an optical readout by means of PMTs and scientific CMOS cameras for 3D tracking down to O(keV) energies, for the directional detection of rare events such as low mass Dark Matter and solar neutrino interactions. The largest prototype built so far towards the realisation of the CYGNO experiment demonstrator is the 50 L active volume LIME, with 4 PMTs and a single sCMOS imaging a 33×\times33 cm\textsuperscript{2} area for 50 cm drift, that has been installed in underground Laboratori Nazionali del Gran Sasso in February 2022. We will illustrate LIME performances as evaluated overground in Laboratori Nazionali di Frascati by means of radioactive X-ray sources, and in particular the detector stability, energy response and energy resolution. We will discuss the MC simulation developed to reproduce the detector response and show the comparison with actual data. We will furthermore examine the background simulation worked out for LIME underground data taking and illustrate the foreseen expected measurement and results in terms of natural and materials intrinsic radioactivity characterisation and measurement of the LNGS underground natural neutron flux. The results that will be obtained by underground LIME installation will be paramount in the optimisation of the CYGNO demonstrator, since this is foreseen to be composed by multiple modules with the same LIME dimensions and characteristics

    Technical Design Report - TDR CYGNO-04/INITIUM

    Get PDF
    The aim of this Technical Design Report is to illustrate the technological choices foreseen to be implemented in the construction of the CYGNO-04 demonstrator, motivate them against the experiment physics goals of CYGNO-30 and demonstrate the financial sustainability of the project. CYGNO-04 represents PHASE 1 of the long term CYGNO roadmap, towards the development of large high precision tracking gaseous Time Projection Chamber (TPC) for directional Dark Matter searches and solar neutrino spectroscopy. The CYGNO project1 peculiarities reside in the optical readout of the light produced during the amplification of the primary ionization electrons in a stack of triple Gas Electron Multipliers (GEMs), thanks to the nice scintillation properties of the chosen He:CF4 gas mixture. To this aim, CYGNO is exploiting the fast progress in commercial scientific Active Pixel Sensors (APS) development for highly performing sCMOS cameras, whose high granularity and sensitivity allow to significantly boost tracking, improve particle identification and lower the energy threshold. The X-Y track project obtained from the reconstruction of the sCMOS images is combined with a PMT measurement to obtain a full 3D track reconstruction. In addition, several synergic R&Ds based on the CYGNO experimental approach are under development in the CYGNO collaboration (see Sec 2) to further enhance the light yield by means of electro luminescence after the amplification stage, to improve the tracking performances by exploiting negative ion drift operation within the INITIUM ERC Consolidator Grant, and to boost the sensitivity to O(GeV) Dark Matter masses by employing hydrogen rich target towards the development of PHASE 2 (see Sec. 1.2). While still under optimization and subject to possible significant improvements, the CYGNO experimental approach performances and capabilities demonstrated so far with prototypes allow to foresee the development of an O(30) m3 experiment by 2026 for a cost of O(10) MEUROs. A CYGNO-30 experiment would be able to give a significant contribution to the search and study of Dark Matter with masses below 10 GeV/c2 for both SI and SD coupling. In case of a Dark Matter observation claim by other experiments, the information provided by a directional detector such as CYGNO would be fundamental to positively confirm the galactic origin of the allegedly detected Dark Matter signal. CYGNO-30 could furthermore provide the first directional measurement of solar neutrinos from the pp chain, possibly extending to lower energies the Borexino measurement2. In order to reach this goal, the CYGNO project is proceeding through a staged approach. The PHASE 0 50 L detector (LIME, recently installed underground LNGS) will validate the full performances of the optical readout via APS commercial cameras and PMTs and the Montecarlo simulation of the expected backgrounds. The full CYGNO-04 demonstrator will be realized with all the technological and material choices foreseen for CYGNO-30, to demonstrate the scalability of the experimental approach and the potentialities of the large PHASE 2 detector to reach the expected physics goals. The first PHASE 1 design anticipated a 1 m3 active volume detector with two back-to-back TPCs with a central cathode and 500 mm drift length. Each 1 m2 readout area would have been composed by 9 + 9 readout modules having the LIME PHASE 0 dimensions and layout. Time (end of INITIUM project by March 2025) and current space availability at underground LNGS (only Hall F) forced the rescaling of the PHASE 1 active volume and design to a 0.4 m3, hence CYGNO-04. CYGNO-04 will keep the back-to-back double TPC layout with 500 mm drift length each, but with an 800 x 500 mm2 readout area covered by a 2 + 2 modules based on LIME design. The reduction of the detector volume has no impact on the technological objectives of PHASE 1, since the modular design with central cathode, detector materials and shieldings and auxiliary systems are independent of the total volume. The physics reach (which is a byproduct of PHASE 1 and NOT an explicit goal) will be only very partially reduced (less than a factor 2 overall) since a smaller detector volume implies also a reduced background from internal materials radioactivity. In addition, the cost reduction of CYGNO-04 of about 1⁄3 with respect to CYGNO-1 illustrated in the CDR effectively makes the overall project more financially sustainable (see CBS in the last section). In summary this document will explain: the physical motivation of the CYGNO project and the technical motivations of the downscale of the PHASE 1 to CYGNO-04, 400 liters of active volume, with respect to the demonstrator presented in the CDR; the results of R&D and the Montecarlo expectations for PHASE 0; the technical choices, procedures and the executive drawings of CYGNO-04 in the Hall F of the LNGS; safety evaluations and the interference/request to the LNGS services; Project management, WBS/WBC, WP, GANTT, ec

    The CYGNO Experiment

    Get PDF
    The search for a novel technology able to detect and reconstruct nuclear and electron recoil events with the energy of a few keV has become more and more important now that large regions of high-mass dark matter (DM) candidates have been excluded. Moreover, a detector sensitive to incoming particle direction will be crucial in the case of DM discovery to open the possibility of studying its properties. Gaseous time projection chambers (TPC) with optical readout are very promising detectors combining the detailed event information provided by the TPC technique with the high sensitivity and granularity of latest-generation scientific light sensors. The CYGNO experiment (a CYGNus module with Optical readout) aims to exploit the optical readout approach of multiple-GEM structures in large volume TPCs for the study of rare events as interactions of low-mass DM or solar neutrinos. The combined use of high-granularity sCMOS cameras and fast light sensors allows the reconstruction of the 3D direction of the tracks, offering good energy resolution and very high sensitivity in the few keV energy range, together with a very good particle identification useful for distinguishing nuclear recoils from electronic recoils. This experiment is part of the CYGNUS proto-collaboration, which aims at constructing a network of underground observatories for directional DM search. A one cubic meter demonstrator is expected to be built in 2022/23 aiming at a larger scale apparatus (30 m3^3--100 m3^3) at a later stage

    Educomunicação, Transformação Social e Desenvolvimento Sustentável

    Get PDF
    Esta publicação apresenta os principais trabalhos dos GTs do II Congresso Internacional de Comunicação e Educação nos temas Transformação social, com os artigos que abordam principalmente Educomunicação e/ou Mídia-Educação, no contexto de políticas de diversidade, inclusão e equidade; e, em Desenvolvimento Sustentável os artigos que abordam os avanços da relação comunicação/educação no contexto da educação ambiental e desenvolvimento sustentável

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019.

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs). In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.Funding/Support: The Institute for Health Metrics and Evaluation received funding from the Bill & Melinda Gates Foundation and the American Lebanese Syrian Associated Charities. Dr Aljunid acknowledges the Department of Health Policy and Management of Kuwait University and the International Centre for Casemix and Clinical Coding, National University of Malaysia for the approval and support to participate in this research project. Dr Bhaskar acknowledges institutional support from the NSW Ministry of Health and NSW Health Pathology. Dr Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, which is funded by the German Federal Ministry of Education and Research. Dr Braithwaite acknowledges funding from the National Institutes of Health/ National Cancer Institute. Dr Conde acknowledges financial support from the European Research Council ERC Starting Grant agreement No 848325. Dr Costa acknowledges her grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundação para a Ciência e Tecnologia, IP under the Norma Transitória grant DL57/2016/CP1334/CT0006. Dr Ghith acknowledges support from a grant from Novo Nordisk Foundation (NNF16OC0021856). Dr Glasbey is supported by a National Institute of Health Research Doctoral Research Fellowship. Dr Vivek Kumar Gupta acknowledges funding support from National Health and Medical Research Council Australia. Dr Haque thanks Jazan University, Saudi Arabia for providing access to the Saudi Digital Library for this research study. Drs Herteliu, Pana, and Ausloos are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Dr Hugo received support from the Higher Education Improvement Coordination of the Brazilian Ministry of Education for a sabbatical period at the Institute for Health Metrics and Evaluation, between September 2019 and August 2020. Dr Sheikh Mohammed Shariful Islam acknowledges funding by a National Heart Foundation of Australia Fellowship and National Health and Medical Research Council Emerging Leadership Fellowship. Dr Jakovljevic acknowledges support through grant OI 175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Dr Katikireddi acknowledges funding from a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). Dr Md Nuruzzaman Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Dr Yun Jin Kim was supported by the Research Management Centre, Xiamen University Malaysia (XMUMRF/2020-C6/ITCM/0004). Dr Koulmane Laxminarayana acknowledges institutional support from Manipal Academy of Higher Education. Dr Landires is a member of the Sistema Nacional de Investigación, which is supported by Panama’s Secretaría Nacional de Ciencia, Tecnología e Innovación. Dr Loureiro was supported by national funds through Fundação para a Ciência e Tecnologia under the Scientific Employment Stimulus–Institutional Call (CEECINST/00049/2018). Dr Molokhia is supported by the National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London. Dr Moosavi appreciates NIGEB's support. Dr Pati acknowledges support from the SIAN Institute, Association for Biodiversity Conservation & Research. Dr Rakovac acknowledges a grant from the government of the Russian Federation in the context of World Health Organization Noncommunicable Diseases Office. Dr Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. Dr Sheikh acknowledges support from Health Data Research UK. Drs Adithi Shetty and Unnikrishnan acknowledge support given by Kasturba Medical College, Mangalore, Manipal Academy of Higher Education. Dr Pavanchand H. Shetty acknowledges Manipal Academy of Higher Education for their research support. Dr Diego Augusto Santos Silva was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil Finance Code 001 and is supported in part by CNPq (302028/2018-8). Dr Zhu acknowledges the Cancer Prevention and Research Institute of Texas grant RP210042

    Global, regional, and national progress towards Sustainable Development Goal 3.2 for neonatal and child health: all-cause and cause-specific mortality findings from the Global Burden of Disease Study 2019

    Get PDF
    Background Sustainable Development Goal 3.2 has targeted elimination of preventable child mortality, reduction of neonatal death to less than 12 per 1000 livebirths, and reduction of death of children younger than 5 years to less than 25 per 1000 livebirths, for each country by 2030. To understand current rates, recent trends, and potential trajectories of child mortality for the next decade, we present the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 findings for all-cause mortality and cause-specific mortality in children younger than 5 years of age, with multiple scenarios for child mortality in 2030 that include the consideration of potential effects of COVID-19, and a novel framework for quantifying optimal child survival. Methods We completed all-cause mortality and cause-specific mortality analyses from 204 countries and territories for detailed age groups separately, with aggregated mortality probabilities per 1000 livebirths computed for neonatal mortality rate (NMR) and under-5 mortality rate (USMR). Scenarios for 2030 represent different potential trajectories, notably including potential effects of the COVID-19 pandemic and the potential impact of improvements preferentially targeting neonatal survival. Optimal child survival metrics were developed by age, sex, and cause of death across all GBD location-years. The first metric is a global optimum and is based on the lowest observed mortality, and the second is a survival potential frontier that is based on stochastic frontier analysis of observed mortality and Healthcare Access and Quality Index. Findings Global U5MR decreased from 71.2 deaths per 1000 livebirths (95% uncertainty interval WI] 68.3-74-0) in 2000 to 37.1 (33.2-41.7) in 2019 while global NMR correspondingly declined more slowly from 28.0 deaths per 1000 live births (26.8-29-5) in 2000 to 17.9 (16.3-19-8) in 2019. In 2019,136 (67%) of 204 countries had a USMR at or below the SDG 3.2 threshold and 133 (65%) had an NMR at or below the SDG 3.2 threshold, and the reference scenario suggests that by 2030,154 (75%) of all countries could meet the U5MR targets, and 139 (68%) could meet the NMR targets. Deaths of children younger than 5 years totalled 9.65 million (95% UI 9.05-10.30) in 2000 and 5.05 million (4.27-6.02) in 2019, with the neonatal fraction of these deaths increasing from 39% (3.76 million 95% UI 3.53-4.021) in 2000 to 48% (2.42 million; 2.06-2.86) in 2019. NMR and U5MR were generally higher in males than in females, although there was no statistically significant difference at the global level. Neonatal disorders remained the leading cause of death in children younger than 5 years in 2019, followed by lower respiratory infections, diarrhoeal diseases, congenital birth defects, and malaria. The global optimum analysis suggests NMR could be reduced to as low as 0.80 (95% UI 0.71-0.86) deaths per 1000 livebirths and U5MR to 1.44 (95% UI 1-27-1.58) deaths per 1000 livebirths, and in 2019, there were as many as 1.87 million (95% UI 1-35-2.58; 37% 95% UI 32-43]) of 5.05 million more deaths of children younger than 5 years than the survival potential frontier. Interpretation Global child mortality declined by almost half between 2000 and 2019, but progress remains slower in neonates and 65 (32%) of 204 countries, mostly in sub-Saharan Africa and south Asia, are not on track to meet either SDG 3.2 target by 2030. Focused improvements in perinatal and newborn care, continued and expanded delivery of essential interventions such as vaccination and infection prevention, an enhanced focus on equity, continued focus on poverty reduction and education, and investment in strengthening health systems across the development spectrum have the potential to substantially improve USMR. Given the widespread effects of COVID-19, considerable effort will be required to maintain and accelerate progress. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
    corecore