52 research outputs found

    Extensive analysis of miRNA trimming and tailing indicates that AGO1 has a complex role in miRNA turnover

    Get PDF
    MicroRNAs are small regulatory RNAs involved in several processes in plants ranging from development and stress responses to defense against pathogens. In order to accomplish their molecular functions, miRNAs are methylated and loaded into one ARGONAUTE (AGO) protein, commonly known as AGO1, to stabilize and protect the molecule and to assemble a functional RNA-induced silencing complex (RISC). A specific machinery controls miRNA turnover to ensure the silencing release of targeted-genes in given circumstances. The trimming and tailing of miRNAs are fundamental modifications related to their turnover and, hence, to their action. In order to gain a better understanding of these modifications, we analyzed Arabidopsis thaliana small RNA sequencing data from a diversity of mutants, related to miRNA biogenesis, action, and turnover, and from different cellular fractions and immunoprecipitations. Besides confirming the effects of known players in these pathways, we found increased trimming and tailing in miRNA biogenesis mutants. More importantly, our analysis allowed us to reveal the importance of ARGONAUTE 1 (AGO1) loading, slicing activity, and cellular localization in trimming and tailing of miRNAs.Fil: Giudicatti, Axel Joel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Tomassi, Ariel Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Manavella, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Arce, Agustín Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentin

    Metastatic cutaneous melanoma associated with vitreous seeding

    Get PDF
    BackgroundOcular metastases of cutaneous melanoma exclusive to the vitreous are a rare presentation and usually represent disseminated disease. Although traditionally associated with poor outcomes, recent developments in melanoma treatment have vastly improved prognosis.AimsTo review new targeted therapies for metastatic-melanoma.MethodsLiterature review of current clinical guidelines, systematic reviews and case series surrounding current recommended targeted therapies for metastatic-melanoma.ResultsNew targeted therapeutic agents offer improved treatment response, progression free survival, overall survival and have a better side-effect profile than traditional chemotherapy agents for metastatic melanoma.ConclusionTargeted agents for melanoma have improved patient prognosis and life expectancy, likely leading to reduced need for surgical intervention

    HASTY modulates miRNA biogenesis by linking pri-miRNA transcription and processing

    Get PDF
    HASTY, the plant ortholog of human exportin 5, was proposed to export miRNAs from the nucleus to the cytoplasm, whereas this has long been disputed. This study shows that HASTY, rather than acting as a miRNA cargo protein, promotes miRNA biogenesis by stabilizing a complex between DCL1 and Mediator at MIRNA loci, thereby acting as a linker between pri-miRNA transcription and processing.Fil: Cambiagno, Damián Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Giudicatti, Axel Joel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Arce, Agustín Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Gagliardi, Delfina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Li, Lei. Institut Max Planck Fuer Gesellschaft. Institut Fur Entwicklungsbiolobie. Developmental Biology; AlemaniaFil: Yuan, Wei. Institut Max Planck Fuer Gesellschaft. Institut Fur Entwicklungsbiolobie. Developmental Biology; AlemaniaFil: Lundberg, Derek S.. Institut Max Planck Fuer Gesellschaft. Institut Fur Entwicklungsbiolobie. Developmental Biology; AlemaniaFil: Weigel, Detlef. Institut Max Planck Fuer Gesellschaft. Institut Fur Entwicklungsbiolobie. Developmental Biology; AlemaniaFil: Manavella, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentin

    The eINTACT system dissects bacterial exploitation of plant osmosignalling to enhance virulence

    Get PDF
    Bacteria inject effector proteins into host cells to manipulate cellular processes that promote disease. Since bacteria deliver minuscule amounts of effectors only into targeted host cells, it is technically challenging to capture effector-dependent cellular changes from bulk-infected host tissues. Here, we report a new technique called effector-inducible isolation of nuclei tagged in specific cell types (eINTACT), which facilitates affinity-based purification of nuclei from Arabidopsis plant cells that have received Xanthomonas bacterial effectors. Analysis of purified nuclei reveals that the Xanthomonas effector XopD manipulates the expression of Arabidopsis abscisic acid signalling-related genes and activates OSCA1.1, a gene encoding a calcium-permeable channel required for stomatal closure in response to osmotic stress. The loss of OSCA1.1 causes leaf wilting and reduced bacterial growth in infected leaves, suggesting that OSCA1.1 promotes host susceptibility. eINTACT allows us to uncover that XopD exploits host OSCA1.1/abscisic acid osmosignalling-mediated stomatal closure to create a humid habitat that favours bacterial growth and opens up a new avenue for accurately elucidating functions of effectors from numerous gram-negative plant bacteria in native infection contexts.Fil: You, Yuan. Eberhard Karls Universität Tübingen; AlemaniaFil: Koczyk, Grzegorz. Polish Academy of Sciences; ArgentinaFil: Nuc, Maria. Polish Academy of Sciences; ArgentinaFil: Morbitzer, Robert. Eberhard Karls Universität Tübingen; AlemaniaFil: Holmes, Danalyn R.. Eberhard Karls Universität Tübingen; AlemaniaFil: von Roepenack Lahaye, Edda. Eberhard Karls Universität Tübingen; AlemaniaFil: Hou, Shiji. Huazhong Agricultural University; ChinaFil: Giudicatti, Axel Joel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Gris, Carine. Université de Toulouse; FranciaFil: Manavella, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Noël, Laurent D.. Université de Toulouse; FranciaFil: Krajewski, Paweł. Polish Academy of Sciences; ArgentinaFil: Lahaye, Thomas. Eberhard Karls Universität Tübingen; Alemani

    Electrochemistry: A basic and powerful tool for micro- and nanomotor fabrication and characterization

    Get PDF
    Electrochemistry, although an ancient field of knowledge, has become of paramount importance in the synthesis of materials at the nanoscale, with great interest not only for fundamental research but also for practical applications. One of the promising fields in which electrochemistry meets nanoscience and nanotechnology is micro/nanoscale motors. Micro/nano motors, which are devices able to perform complex tasks at the nanoscale, are commonly multifunctional nanostructures of different materials - metals, polymers, oxides- and shapes -spheres, wires, helices- with the ability to be propelled in fluids. Here, we first introduce the topic of micro/nanomotors and make a concise review of the field up to day. We have analyzed the field from different points of view (e.g. materials science and nanotechnology, physics, chemistry, engineering, biology or environmental science) to have a broader view of how the different disciplines have contributed to such exciting and impactful topic. After that, we focus our attention on describing what electrochemical technology is and how it can be successfully used to fabricate and characterize micro/nanostructures composed of different materials and showing complex shapes. Finally, we will review the micro and nanomotors fabricated using electrochemical techniques with applications in biomedicine and environmental remediation, the two main applications investigated so far in this field. Thus, different strategies have thus been shown capable of producing core-shell nanomaterials combining the properties of different materials, multisegmented nanostructures made of, for example, alternating metal and polymer segments to confer them with flexibility or helicoidal systems to favor propulsion. Moreover, further functionalization and interaction with other materials to form hybrid and more complex objects is also shown

    Non-specific effects of vaccinations in high-income settings: How to address the issue?

    No full text
    “Non-specific effects” of vaccines go beyond the specific protective effects against the targeted diseases. They, if real, could theoretically be beneficial, neutral or negative. This article intends to answer the following questions: Do the non-specific effects of vaccines exist? Almost certainly yes, and they can be important in low-income countries Are non-specific effects also present in high-income countries? At least to some extent, it seems quite logical Can non-specific effects be systematically identified by the current systems of side effects/unintended reactions monitoring? Most likely not Could the Institute of Medicine proposals and some ongoing attempts solve the issue? It seems unlikely Could there be better, feasible and ethically acceptable ways to achieve the aforementioned objective? A proposal is presented about this issue, with the potential both to solve the problem with the most valid methods, and to overcome the ethical problems that have so far precluded the adoption of RCTs to study possible vaccine non-specific effects, monitored by long follow-up
    corecore