379 research outputs found

    Strike Violence: The NLRB\u27s Reluctance to Wield its Broad Remedial Power

    Get PDF

    Current status of laboratory and imaging diagnosis of neonatal necrotizing enterocolitis

    Get PDF
    Necrotizing enterocolitis continues to be a devastating disease process for very low birth weight infants in Neonatal Intensive Care Units. The aetiology and pathogenesis of necrotizing enterocolitis are not definitively understood. It is known that necrotizing enterocolitis is secondary to a complex interaction of multiple factors that results in mucosal damage, which leads to intestinal ischemia and necrosis. Advances in neonatal care, including resuscitation and ventilation support technology, have seen increased survival rates among premature neonates and a concomitant detection in the incidence of this intestinal disease.Diagnosis can be difficult, and identifying infants at the onset of disease remains a challenge. Early diagnosis, which relies on imaging findings, and initiation of prompt therapy are essential to limit morbidity and mortality. Moreover, early management is critical and life-saving.This review summarizes what is known on the laboratory and instrumental diagnostic strategies needed to improve neonatal outcomes and, possibily, to prevent the onset of an overt necrotizing enterocolitis

    Particulate Nanoinsecticides: A New Concept in Insect Pest Management

    Get PDF
    Nanostructured alumina (NSA) has insecticidal properties and has been demonstrated to be effective against stored product insect pests in laboratory bioassays. NSA is a nano-engineered material synthesized by oxidation of metals, and resulting particles show fixed electric charges. On the other hand, insects exhibit their own electric charges generated by triboelectrification. We propose that the mechanism of action of NSA involves two steps occurring in sequential order. First, a strong electrical binding between negatively charged NSA particles and positively charged insect. Next, dehydration of the insect occurs due to the strong sorbtive action of the NSA particles that remove the insect cuticular, leading to death by dehydration. As postulated for insecticidal inert powder in generals, particles attach to the insect cuticle surface disrupting water balance, and effectiveness decreases as ambient humidity increases, given that electrostatic bond forces are reduced by electrostatic discharge. The high insecticidal efficacy of NSA is a result of its intrinsic electric charge, small particle size and high sorptive potential due to its large specific surface area. NSA could provide an alternative to conventional synthetic organic insecticides due to its strong insecticidal properties with the advantage that its mechanism of action involves physical and electrostatic phenomena

    Search for noncompetitive 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid receptor (AMPAR) antagonists: Synthesis, pharmacological properties, and computational studies

    Get PDF
    Abstract The development of new 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor (AMPAR) negative modulators has received considerable interest due to their crucial role in specific neurological diseases. In recent years, our research group has been engaged in the development of new AMPAR ligands and chemical and biological studies of various 2,3-benzodiazepin-4-(thi)ones (CFMs) and their analogous cyclofunctionalized have been reported. Electrophysiological experiments confirmed that their effects are mediated through the AMPAR complex in a selective and noncompetitive fashion. Moreover, we carried out computational studies which suggested the possible binding site for noncompetitive antagonists; we also developed a 3D ligand-based pharmacophore model in order to map common structural features of highly potent compounds. Our hypothesis was successfully used as a frame work for the design of a new class of allosteric modulators containing a tetrahydroisoquinoline skeleton and led to the discovery of a very potent AMPAR antagonist with marked antiepileptic effects

    From Neonatal Intensive Care to Neurocritical Care: Is It Still a Mirage? The Sicilian Multicenter Project

    Get PDF
    Background. Neonatal brain injury (NBI) can lead to a significant neurological disability or even death. After decades of intense efforts to improve neonatal intensive care and survival of critically ill newborns, the focus today is an improved long-term neurological outcome through brain-focused care. The goal of neuroprotection in the neonatal intensive care unit (NICU) is the prevention of new or worsening NBI in premature and term newborns. As a result, the neonatal neurocritical care unit (NNCU) has been emerging as a model of care to decrease NBI and improve the long-term neurodevelopment in critically ill neonates. Purpose. Neurocritical care (NCC) Sicilian project includes three academic sites with NICU in Sicily (Catania, Messina, and Palermo), and its primary goal is to develop neurocritical neonatal care unit (NNCU). Methods. In 2018, the three NICUs created a dedicated space for neonates with primary neurological diagnosis or at risk for neurological injuries - NNCU. Admission criteria for eligible patients and treatment protocols were created. Contact with parents, environmental protection, basic monitoring, brain monitoring, pharmacological therapy, and organization of the staff were protocolized. Results. Evaluation of the efforts to establish NNCU within existing NICU, current protocols, and encountered problems are shown. Implications for Practice. Our outcome confirmed the need for dedicated NNCU for neuroprotection of critically ill neonates at risk for a neurological injury. Although the literature on neonatal neurocritical care is still scarce, we see the value of such targeted approach to newborn brain protection and therefore we will continue developing our NNCU, even though there have been problems encountered. The project of building NNCU will continue to be closely monitored. Conclusions. The development of our neonatal neurocritical model of care is far from being completed. Although it is currently limited to the Sicilian area only, the goal of this paper is to share the development of this multicenter interdisciplinary project focused on a newborn brain protection. After evaluating our outcome, we strongly believe that a combined expertise in neonatal neurology and neonatal critical care can lead to an improved neurodevelopmental outcome for critically ill neonates, from the extremely preterm to those with brain injuries

    Prominent and regressive brain developmental disorders associated with nance-horan syndrome

    Get PDF
    Nance-Horan syndrome (NHS) is a rare X-linked developmental disorder caused mainly by loss of function variants in the NHS gene. NHS is characterized by congenital cataracts, dental anomalies, and distinctive facial features, and a proportion of the affected individuals also present intellectual disability and congenital cardiopathies. Despite identification of at least 40 distinct hemizygous variants leading to NHS, genotype-phenotype correlations remain largely elusive. In this study, we describe a Sicilian family affected with congenital cataracts and dental anomalies and diagnosed with NHS by whole-exome sequencing (WES). The affected boy from this family presented a late regression of cognitive, motor, language, and adaptive skills, as well as broad behavioral anomalies. Furthermore, brain imaging showed corpus callosum anomalies and periven-tricular leukoencephalopathy. We expand the phenotypic and mutational NHS spectrum and review potential disease mechanisms underlying the central neurological anomalies and the potential neu-rodevelopmental features associated with NHS

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E>Eth=5.5×1019E>E_{th}=5.5\times 10^{19} eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E>EthE>E_{th} are heavy nuclei with charge ZZ, the proton component of the sources should lead to excesses in the same regions at energies E/ZE/Z. We here report the lack of anisotropies in these directions at energies above Eth/ZE_{th}/Z (for illustrative values of Z=6, 13, 26Z=6,\ 13,\ 26). If the anisotropies above EthE_{th} are due to nuclei with charge ZZ, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies

    MR Micro-Neurography and a Segmentation Protocol Applied to Diabetic Neuropathy

    Get PDF
    The aim of this study was to assess with MRI morphometric ultrastructural changes in nerves affected by diabetic peripheral neuropathy (DPN). We used an MR micro-neurography imaging protocol and a semiautomated technique of tissue segmentation to visualize and measure the volume of internal nerve components, such as the epineurium and nerve fascicles. The tibial nerves of 16 patients affected by DPN and of 15 healthy volunteers were imaged. Nerves volume (NV), fascicles volume (FV), fascicles to nerve ratio (FNR), and nerves cross-sectional areas (CSA) were obtained. In patients with DPN the NV was increased and the FNR was decreased, as a result of an increase of the epineurium (FNR in diabetic neuropathy 0,665; in controls 0,699, p=0,040). CSA was increased in subjects with DPN (12,84 mm2 versus 10,22 mm2, p=0,003). The FV was increased in patients with moderate to severe DPN. We have demonstrated structural changes occurring in nerves affected by DPN, which otherwise are assessable only with an invasive biopsy. MR micro-neurography appears to be suitable for the study of microscopic changes in tibial nerves of diabetic patients
    • 

    corecore