538 research outputs found

    Problems to put students in a role close to a mathematical researcher

    Get PDF
    In this workshop, we present a model of problem that we call Research Situation for the Classroom (RSC). The aim of a RSC is to put students in a role close to a mathematical researcher in order to make them work on mathematical thinking/skills. A RSC has some characteristics : the problem is close to a research one, the statement is an easy understandable question, school knowledge are elementary, there is no end, a solved question postponed to new questions... The most important characteristic of a RSC is that students can manage their research by fixing themselves some variable of the problem. So, a RSC is completely different from a problem that students usually do in France. For short : there is no final answer, students can try to resolve their own questions : a RSC is a large open field where many sub-problems exist; the goal for the students is not to apply a technique: the goal is, as for a researcher, to search. These type of situations are particularly interesting to develop problem solving skills and mathematical thinking. They can also let students discover that mathematics are “alive” and “realistic”. This workshop will be split into two parts. First, we propose to put people in the situation of solving a RSC to make them discover practically what is it. After, we present the model of a RSC and some results of our experimentations

    Drug vaping applied to cannabis: Is "Cannavaping" a therapeutic alternative to marijuana?

    Get PDF
    Therapeutic cannabis administration is increasingly used in Western countries due to its positive role in several pathologies. Dronabinol or tetrahydrocannabinol (THC) pills, ethanolic cannabis tinctures, oromucosal sprays or table vaporizing devices are available but other cannabinoids forms can be used. Inspired by the illegal practice of dabbing of butane hashish oil (BHO), cannabinoids from cannabis were extracted with butane gas, and the resulting concentrate (BHO) was atomized with specific vaporizing devices. The efficiency of "cannavaping," defined as the "vaping" of liquid refills for e-cigarettes enriched with cannabinoids, including BHO, was studied as an alternative route of administration for therapeutic cannabinoids. The results showed that illegal cannavaping would be subjected to marginal development due to the poor solubility of BHO in commercial liquid refills (especially those with high glycerin content). This prevents the manufacture of liquid refills with high BHO concentrations adopted by most recreational users of cannabis to feel the psychoactive effects more rapidly and extensively. Conversely, "therapeutic cannavaping" could be an efficient route for cannabinoids administration because less concentrated cannabinoids-enriched liquid refills are required. However, the electronic device marketed for therapeutic cannavaping should be carefully designed to minimize potential overheating and contaminant generation

    Sodium Iodate-Induced Degeneration Results in Local Complement Changes and Inflammatory Processes in Murine Retina

    Get PDF
    Age-related macular degeneration (AMD), one of the leading causes of blindness worldwide, causes personal suffering and high socioeconomic costs. While there has been progress in the treatments for the neovascular form of AMD, no therapy is yet available for the more common dry form, also known as geographic atrophy. We analysed the retinal tissue in a mouse model of retinal degeneration caused by sodium iodate (NaIO3)-induced retinal pigment epithelium (RPE) atrophy to understand the underlying pathology. RNA sequencing (RNA-seq), qRT-PCR, Western blot, immunohistochemistry of the retinas and multiplex ELISA of the mouse serum were applied to find the pathways involved in the degeneration. NaIO3 caused patchy RPE loss and thinning of the photoreceptor layer. This was accompanied by the increased retinal expression of complement components c1s, c3, c4, cfb and cfh. C1s, C3, CFH and CFB were complement proteins, with enhanced deposition at day 3. C4 was upregulated in retinal degeneration at day 10. Consistently, the transcript levels of proinflammatory ccl-2, -3, -5, il-1β, il-33 and tgf-β were increased in the retinas of NaIO3 mice, but vegf-a mRNA was reduced. Macrophages, microglia and gliotic Müller cells could be a cellular source for local retinal inflammatory changes in the NaIO3 retina. Systemic complement and cytokines/chemokines remained unaltered in this model of NaIO3-dependent retinal degeneration. In conclusion, systemically administered NaIO3 promotes degenerative and inflammatory processes in the retina, which can mimic the hallmarks of geographic atrophy

    Murine Models for Trypanosoma brucei gambiense Disease Progression—From Silent to Chronic Infections and Early Brain Tropism

    Get PDF
    Trypanosoma brucei gambiense is responsible for more than 90% of reported cases of human African trypanosomosis (HAT). Infection can last for months or even years without major signs or symptoms of infection, but if left untreated, sleeping sickness is always fatal. In the present study, different T. b. gambiense field isolates from the cerebrospinal fluid of patients with HAT were adapted to growth in vitro. These isolates belong to the homogeneous Group 1 of T. b. gambiense, which is known to induce a chronic infection in humans. In spite of this, these isolates induced infections ranging from chronic to silent in mice, with variations in parasitaemia, mouse lifespan, their ability to invade the CNS and to elicit specific immune responses. In addition, during infection, an unexpected early tropism for the brain as well as the spleen and lungs was observed using bioluminescence analysis. The murine models presented in this work provide new insights into our understanding of HAT and allow further studies of parasite tropism during infection, which will be very useful for the treatment and the diagnosis of the disease

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    Effect of the relative shift between the electron density and temperature pedestal position on the pedestal stability in JET-ILW and comparison with JET-C

    Get PDF
    The electron temperature and density pedestals tend to vary in their relative radial positions, as observed in DIII-D (Beurskens et al 2011 Phys. Plasmas 18 056120) and ASDEX Upgrade (Dunne et al 2017 Plasma Phys. Control. Fusion 59 14017). This so-called relative shift has an impact on the pedestal magnetohydrodynamic (MHD) stability and hence on the pedestal height (Osborne et al 2015 Nucl. Fusion 55 063018). The present work studies the effect of the relative shift on pedestal stability of JET ITER-like wall (JET-ILW) baseline low triangularity (\u3b4) unseeded plasmas, and similar JET-C discharges. As shown in this paper, the increase of the pedestal relative shift is correlated with the reduction of the normalized pressure gradient, therefore playing a strong role in pedestal stability. Furthermore, JET-ILW tends to have a larger relative shift compared to JET carbon wall (JET-C), suggesting a possible role of the plasma facing materials in affecting the density profile location. Experimental results are then compared with stability analysis performed in terms of the peeling-ballooning model and with pedestal predictive model EUROPED (Saarelma et al 2017 Plasma Phys. Control. Fusion). Stability analysis is consistent with the experimental findings, showing an improvement of the pedestal stability, when the relative shift is reduced. This has been ascribed mainly to the increase of the edge bootstrap current, and to minor effects related to the increase of the pedestal pressure gradient and narrowing of the pedestal pressure width. Pedestal predictive model EUROPED shows a qualitative agreement with experiment, especially for low values of the relative shift

    Overview of the JET ITER-like wall divertor

    Get PDF
    corecore