11 research outputs found

    Measuring the free fall of antihydrogen

    Get PDF
    After the first production of cold antihydrogen by the ATHENA and ATRAP experiments ten years ago, new second-generation experiments are aimed at measuring the fundamental properties of this anti-atom. The goal of AEGIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is to test the weak equivalence principle by studying the gravitational interaction between matter and antimatter with a pulsed, cold antihydrogen beam. The experiment is currently being assembled at CERN's Antiproton Decelerator. In AEGIS, antihydrogen will be produced by charge exchange of cold antiprotons with positronium excited to a high Rydberg state (n > 20). An antihydrogen beam will be produced by controlled acceleration in an electric-field gradient (Stark acceleration). The deflection of the horizontal beam due to its free fall in the gravitational field of the earth will be measured with a moire deflectometer. Initially, the gravitational acceleration will be determined to a precision of 1%, requiring the detection of about 105 antihydrogen atoms. In this paper, after a general description, the present status of the experiment will be reviewed

    AEgIS Experiment: Measuring the Acceleration g of the Earth's Gravitational Field on Antihydrogen Beam

    Get PDF
    The AEgIS experiment [1] aims at directly measuring the gravitational acceleration g on a beam of cold antihydrogen (H) to a precision of 1%, performing the first test with antimatter of the (WEP) Weak Equivalence Principle. The experimental apparatus is sited at the Antiproton Decelerator (AD) at CERN, Geneva, Switzerland. After production by mixing of antiprotons with Rydberg state positronium atoms (Ps), the atoms will be driven to fly horizontally with a velocity of a few 100 ms−1 for a path length of about 1 meter. The small deflection, few tens of μm, will be measured using two material gratings (of period ∼ 80 μm) coupled to a position-sensitive detector working as a moiré deflectometer similarly to what has been done with matter atoms [2]. The shadow pattern produced by the beam will then be detected by reconstructing the annihilation points with a spatial resolution (∼ 2 μm) of each antiatom at the end of the flight path by the sensitive-position detector. During 2012 the experimental apparatus has been commissioned with antiprotons and positrons. Since the AD will not be running during 2013,during the refurbishment of the CERN accelerators, the experiment is currently working with positrons, electrons and protons, in order to prepare the way for the antihydrogen production in late 2014

    Photochromic polyurethanes for rewritable CGH in optical testing

    Get PDF
    The development of photochromic Computer Generated Holograms (CGHs) to test any complex optics, such as aspheres and free-form optics, is described. A thermally irreversible photochromic polyurethane has been synthesized to give good thin films with a strong modulation of the optical transmission. The photochromic CGH has been tested with a simple interferometrical configuration showing promising results. The use of photochromic CGHs provides advantages over standard technologies, as rewritability and self developing

    New fast synthesis route for symmetric and asymmetric phenyl-substituted photochromic dithienylethenes bearing functional groups such as alcohols, carboxylic acids, or amines

    No full text
    This Letter describes an efficient three-step synthesis route of symmetric and asymmetric phenyl-substituted photochromic 1,2-dithienylethenes bearing unprotected functional groups (i.e., alcohols, carboxylic acids or amines). These products can be easily obtained by typical Suzuki cross-coupling between photochromic dichlorides and commercial available boronic acids or pinacol esters

    Emerging therapeutic approaches to mitochondrial diseases

    No full text
    Mitochondrial diseases are very heterogeneous and can affect different tissues and organs. Moreover, they can be caused by genetic defects in either nuclear or mitochondrial DNA as well as by environmental factors. All of these factors have made the development of therapies difficult. In this review article, we will discuss emerging approaches to the therapy of mitochondrial disorders, some of which are targeted to specific conditions whereas others may be applicable to a more diverse group of patients. © 2010 Wiley‐Liss, Inc. Dev Disabil Res Rev 2010;16:219–229

    AEgIS experiment: Towards antihydrogen beam production for antimatter gravity measurements

    No full text
    AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is an experiment that aims to perform the first direct measurement of the gravitational acceleration g of antihydrogen in the Earth’s field. A cold antihydrogen beam will be produced by charge exchange reaction between cold antiprotons and positronium excited in Rydberg states. Rydberg positronium (with quantum number n between 20 and 30) will be produced by a two steps laser excitation. The antihydrogen beam, after being accelerated by Stark effect, will fly through the gratings of a moiré deflectometer. The deflection of the horizontal beam due to its free fall will be measured by a position sensitive detector. It is estimated that the detection of about 103 antihydrogen atoms is required to determine the gravitational acceleration with a precision of 1%. In this report an overview of the AEgIS experiment is presented and its current status is described. Details on the production of slow positronium and its excitation with lasers are discussed

    AEgIS Experiment: Towards Antihydrogen Beam Production for Antimatter Gravity Measurements

    No full text
    AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is an experiment that aims to perform the first direct measurement of the gravitational acceleration g of antihydrogen in the Earth's field. A cold antihydrogen beam will be produced by charge exchange reaction between cold antiprotons and positronium excited in Rydberg states. Rydberg positronium (with quantum number n between 20 and 30) will be produced by a two steps laser excitation. The antihydrogen beam, after being accelerated by Stark effect, will fly through the gratings of a moir, deflectometer. The deflection of the horizontal beam due to its free fall will be measured by a position sensitive detector. It is estimated that the detection of about 10(3) antihydrogen atoms is required to determine the gravitational acceleration with a precision of 1%. In this report an overview of the AEgIS experiment is presented and its current status is described. Details on the production of slow positronium and its excitation with lasers are discussed
    corecore