9 research outputs found

    Intrinsic generation time of the SARS-CoV-2 Omicron variant: an observational study of household transmission

    Get PDF
    Background Starting from the final months of 2021, the SARS-CoV-2 Omicron variant expanded globally, swiftly replacing Delta, the variant that was dominant at the time. Many uncertainties remain about the epidemiology of Omicron; here, we aim to estimate its generation time.Methods We used a Bayesian approach to analyze 23,122 SARS-CoV-2 infected individuals clustered in 8903 households as determined from contact tracing operations in Reggio Emilia, Italy, throughout January 2022. We estimated the distribution of the intrinsic generation time (the time between the infection dates of an infector and its secondary cases in a fully susceptible population), realized household generation time, realized serial interval (time between symptom onset of an infector and its secondary cases), and contribution of pre-symptomatic transmission.Findings We estimated a mean intrinsic generation time of 6.84 days (95% credible intervals, CrI, 5.72-8.60), and a mean realized household generation time of 3.59 days (95%CrI: 3.55-3.60). The household serial interval was 2.38 days (95%CrI 2.30-2.47) with about 51% (95%CrI 45-56%) of infections caused by symptomatic individuals being generated before symptom onset.Interpretation These results indicate that the intrinsic generation time of the SARS-CoV-2 Omicron variant might not have shortened as compared to previous estimates on ancestral lineages, Alpha and Delta, in the same geographic setting. Like for previous lineages, pre-symptomatic transmission appears to play a key role for Omicron transmission. Estimates in this study may be useful to design quarantine, isolation and contact tracing protocols and to support surveillance (e.g., for the accurate computation of reproduction numbers).Copyright (c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/

    Estimation of the incubation period and generation time of SARS-CoV-2 Alpha and Delta variants from contact tracing data

    Get PDF
    : Quantitative information on epidemiological quantities such as the incubation period and generation time of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is scarce. We analysed a dataset collected during contact tracing activities in the province of Reggio Emilia, Italy, throughout 2021. We determined the distributions of the incubation period for the Alpha and Delta variants using information on negative polymerase chain reaction tests and the date of last exposure from 282 symptomatic cases. We estimated the distributions of the intrinsic generation time using a Bayesian inference approach applied to 9724 SARS-CoV-2 cases clustered in 3545 households where at least one secondary case was recorded. We estimated a mean incubation period of 4.9 days (95% credible intervals, CrI, 4.4-5.4) for Alpha and 4.5 days (95% CrI 4.0-5.0) for Delta. The intrinsic generation time was estimated to have a mean of 7.12 days (95% CrI 6.27-8.44) for Alpha and of 6.52 days (95% CrI 5.54-8.43) for Delta. The household serial interval was 2.43 days (95% CrI 2.29-2.58) for Alpha and 2.74 days (95% CrI 2.62-2.88) for Delta, and the estimated proportion of pre-symptomatic transmission was 48-51% for both variants. These results indicate limited differences in the incubation period and intrinsic generation time of SARS-CoV-2 variants Alpha and Delta compared to ancestral lineages

    SARS-CoV-2 transmission patterns in educational settings during the Alpha wave in Reggio-Emilia, Italy

    Get PDF
    Different monitoring and control policies have been implemented in schools to minimize the spread of SARS-CoV-2. Transmission in schools has been hard to quantify due to the large proportion of asymptomatic carriers in young individuals. We applied a Bayesian approach to reconstruct the transmission chains between 284 SARS-CoV-2 infections ascertained during 87 school outbreak investigations conducted between March and April 2021 in Italy. Under the policy of reactive quarantines, we found that 42.5% (95%CrI: 29.5–54.3%) of infections among school attendees were caused by school contacts. The mean number of secondary cases infected at school by a positive individual during in-person education was estimated to be 0.33 (95%CrI: 0.23–0.43), with marked heterogeneity across individuals. Specifically, we estimated that only 26.0% (95%CrI: 17.6–34.1%) of students and school personnel who tested positive during in-person education caused at least one secondary infection at school. Positive individuals who attended school for at least 6 days before being isolated or quarantined infected on average 0.49 (95%CrI: 0.14–0.83) secondary cases. Our findings provide quantitative insights on the contribution of school transmission to the spread of SARS-CoV-2 in young individuals. Identifying positive cases within 5 days after exposure to their infector could reduce onward transmission at school by at least 30%

    El podcast como recurso didáctico en las asignaturas de Química Orgánica y Farmacéutica en el Grado de Farmacia y doble Grado de Farmacia y Nutrición Humana y dietética

    No full text
    Los contenidos que se crearon pueden ser consultados en los siguientes enlaces: https://www.ivoox.com/podcast-quimica-pequenas-dosis_sq_f11949532_1.html https://open.spotify.com/show/5UuE3sxUJNO1sa76GbBgdOEste proyecto tiene como objetivo la creación, divulgación y uso didáctico de los podcasts como herramienta de difusión de contenidos científicos para el estudio y la profundización de las asignaturas de Química Orgánica y Química Farmacéutica. En este sentido, se pretende que el alumnado, habituado al uso de medios tecnológicos y redes sociales, aprenda a utilizar este recurso no sólo como un instrumento de entretenimiento, sino como un potente medio para el aprendizaje.Universidad Complutense de MadridDepto. de Química en Ciencias FarmacéuticasFac. de FarmaciaFALSEsubmitte

    Mitochondrial calcium homeostasis as potential target for mitochondrial medicine

    Get PDF
    Mitochondria are crucial in different intracellular pathways of signal transduction. Mitochondria are capable of decoding a variety of extracellular stimuli into markedly different intracellular actions, ranging from energy production to cell death. The fine modulation of mitochondrial calcium (Ca2+) homeostasis plays a fundamental role in many of the processes involving this organelle. When mitochondrial Ca2+ homeostasis is compromised, different pathological conditions can occur, depending on the cell type involved. Recent data have shed light on the molecular identity of the main proteins involved in the handling of mitochondrial Ca2+ traffic, opening fascinating and ambitious new avenues for mitochondria-based pharmacological strategies

    Correction to: Tocilizumab for patients with COVID-19 pneumonia. The single-arm TOCIVID-19 prospective trial

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore