59 research outputs found

    Measurement artefacts lead to false positives in the study of birdsong in noise

    Get PDF
    Numerous studies over the past decade have reported correlations between elevated levels of anthropogenic noise and a rise in the minimum frequency of acoustic signals of animals living in noisy habitats. This pattern appears to be occurring globally, and higher pitched signals have been hypothesized to be adaptive changes that reduce masking by low‐frequency traffic noise. However, the sound analysis methods most often used in these studies are prone to measurement errors that can result in false positives. In addition, the commonly used method of measuring frequencies visually from spectrograms might also lead to observer‐expectancy biases that could exacerbate measurement errors. We conducted an experiment to (i) quantify the size and type of errors that result from ‘eye‐balling’ frequency measurements with cursors placed manually on spectrograms of signals recorded in noise and no‐noise conditions, and (ii) to test whether observer expectations lead to significant errors in frequency measurements. We asked 54 volunteers, blind to the true intention of our study, to visually measure the minimum frequency of a variety of natural and synthesized bird sounds, recorded either in noise, or no‐noise conditions. Test subjects were either informed or uninformed about the hypothesized results of the measurements. Our results demonstrate that inappropriate methodology in acoustic analysis can yield false positives with effect sizes as large, or even larger, than those reported in published studies. In addition to these measurement artefacts, psychological observer biases also led to false positives – when observers expected signals to have higher minimum frequencies in noise, they measured significantly higher minimum frequencies than uninformed observers, who had not been primed with any expectation. The use of improper analysis methods in bioacoustics can lead to the publication of spurious results. We discuss alternative methods that yield unbiased frequency measures and we caution that it is imperative for researchers to familiarize themselves both with the functions and limitations of their sound analysis programmes. In addition, observer‐expectancy biases are a potential source of error not only in the field of bioacoustics, but in any situation where measurements can be influenced by human subjectivity

    Complex patterns of spontaneous initiations and terminations of reentrant circulation in a loop of cardiac tissue

    Full text link
    A two-component model is developed that consists of a discrete loop of cardiac cells that circulates action potentials together with a cardiac pacing mechanism. Physiological properties of cells such as restitutions of refractoriness and of conduction velocity are given via experimentally measured functions. The dynamics of circulating pulses and their interactions with the pacer are regulated by two threshold relations. Patterns of spontaneous initiations and terminations of reentry (SITR) generated by this system are studied through numerical simulations and analytical observations. These patterns can be regular or irregular; causes of irregularities are identified as the threshold bistability of reentrant circulation (T-bistability) and in some cases, also phase-resetting interactions with the pacer.Comment: 27 pages, 10 figures, 61 references; A version of this paper (same results) is to appear in the Journal of Theoretical Biology; arXiv V2 adds helpful commments to facilitate reading and corrects minor errors in presentatio

    Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease

    Get PDF
    One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≥3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain–gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials

    An experimental evaluation of the role of the stress axis in mediating predator-prey interactions in wild marine fish

    No full text
    The hypothalamic-pituitary-interrenal (HPI) axis, through corticosteroid secretion, is an integral mechanism regulating internal homeostasis when vertebrates are faced with a stressor. However, continued HPI-axis stimulation can produce homeostatic overload, where corticosteroids are detrimental to organismal function. This overload condition may play an important role in mediating predator-prey interactions, because chronically/previously stressed animals may have higher rates of predator-induced mortality. However, the mechanism(s) underlying this observation are unknown. Using fish as models, we hypothesized that chronic stress would increase predation susceptibility owing to a poor physiological state (e.g. homeostatic overload) with corresponding sub-optimal changes in predator-avoidance behaviour. As cortisol is also required in low quantities to help regulate basic metabolic functions in fish, we expected that a glucocorticoid receptor antagonist (GR; e.g. homeostatic failure) may produce similar effects. Schoolmaster snapper (Lutjanus apodus) were given intraperitoneal implants of cocoa butter impregnated with nothing (sham; 5 ml/kg body weight (BW)), cortisol (50 mg/kg BW) or the GR antagonist RU486 (100 mg/kg BW). At 24-h post-implantation, fish were tethered to the seafloor and observed for behavioural metrics associated with predation. Blood samples were collected from a subset of fish to assess the physiological consequences of the implants. Cortisol- and RU486-implanted fish both had significantly higher plasma cortisol concentrations than sham fish, with blood glucose and plasma urea being elevated only in the former. Furth

    Influence of supraphysiological cortisol manipulation on predator avoidance behaviors and physiological responses to a predation threat in a wild marine teleost fish

    No full text
    The stress axis in teleost fish attempts to maintain internal homeostasis in the face of allostatic loading. However, stress axis induction has been associated with a higher predation rate in fish. To date, the physiological and behavioral factors associated with this outcome are poorly understood. The purpose of the present study was to investigate the impact of experimental cortisol elevation on anti-predator behavior and physiological responses to predator presence. We hypothesized that semi-chronic cor

    Cortisol does not increase risk of mortality to predation in juvenile bluegill sunfish: A manipulative experimental field study

    No full text
    The hypothalamic-pituitary-interrenal (HPI) or stress axis in teleost fishes produces their primary glucocorticoid, cortisol. Although generally an adaptive response, prolonged HPI axis stimulation can impair organismal performance. Previous work has shown that stressed teleosts have higher mortality to predation than unstressed conspecifics, suggesting a role for HPI axis in modulating predator–prey interactions. Our current study investigated whether elevated cortisol levels altered the predation rate of a wild teleost fish, the bluegill sunfish (Lepomis macrochirus). Wild juvenile bluegill were given intraperitoneal implants of cocoa butter (i.e., sham), or cocoa butter containing cortisol or cortisol and the glucocorticoid receptor antagonist RU486. After 24 hr, fish were tethered along the bottom of the lake and their survival under natural predation was recorded following 24 hr. A subset of fish was used to validate the efficacy of cortisol implants in this setting. No treatment effect on survival was observed, suggesting that elevated cortisol has minimal involvement in mediating predator–prey interactio
    corecore