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Measurement artefacts lead to false positives in the study

of birdsong in noise

Henrik Brumm*,1 , SueAnne Zollinger1, Petri T. Niemel€a2 andPhilipp Sprau2

1Communication andSocial BehaviourGroup, Max Planck Institute for Ornithology, 82319Seewiesen, Germany; and
2Behavioural Ecology, Department of Biology, Ludwig-Maximilians-UniversityMunich, 82152Planegg-Martinsried, Germany

Summary

1. Numerous studies over the past decade have reported correlations between elevated levels of anthropogenic

noise and a rise in the minimum frequency of acoustic signals of animals living in noisy habitats. This pattern

appears to be occurring globally, and higher pitched signals have been hypothesized to be adaptive changes that

reduce masking by low-frequency traffic noise. However, the sound analysis methods most often used in these

studies are prone tomeasurement errors that can result in false positives. In addition, the commonly usedmethod

of measuring frequencies visually from spectrograms might also lead to observer-expectancy biases that could

exacerbatemeasurement errors.

2. We conducted an experiment to (i) quantify the size and type of errors that result from ‘eye-balling’ frequency

measurements with cursors placed manually on spectrograms of signals recorded in noise and no-noise condi-

tions, and (ii) to test whether observer expectations lead to significant errors in frequency measurements. We

asked 54 volunteers, blind to the true intention of our study, to visually measure the minimum frequency of a

variety of natural and synthesized bird sounds, recorded either in noise, or no-noise conditions. Test subjects

were either informed or uninformed about the hypothesized results of themeasurements.

3. Our results demonstrate that inappropriate methodology in acoustic analysis can yield false positives with

effect sizes as large, or even larger, than those reported in published studies. In addition to these measurement

artefacts, psychological observer biases also led to false positives – when observers expected signals to have

higher minimum frequencies in noise, they measured significantly higher minimum frequencies than uninformed

observers, who had not been primedwith any expectation.

4. The use of improper analysis methods in bioacoustics can lead to the publication of spurious results. We dis-

cuss alternativemethods that yield unbiased frequencymeasures andwe caution that it is imperative for research-

ers to familiarize themselves both with the functions and limitations of their sound analysis programmes. In

addition, observer-expectancy biases are a potential source of error not only in the field of bioacoustics, but in

any situationwheremeasurements can be influenced by human subjectivity.

Key-words: animal communication, anthropogenic noise, ecological novelty, observer bias,

repeatability, song frequency, sound analysis, spectrogram, urban ecology

Introduction

The study of the effects of anthropogenic noise on animal com-

munication is currently receiving increasing interest in the

fields of behavioural ecology and evolution. This is because a

better understanding of noise pollution has far reaching impli-

cations for the mechanisms of signal production and percep-

tion, the behavioural ecology of signalling, the evolution of

communication systems, and conservation issues (Endler 1992;

Brumm2013;Wiley 2015).

Numerous recent studies have reported elevated minimum

frequencies of bird vocalizations in areas with intense anthro-

pogenic noise (reviewed in Gil & Brumm 2014). This phe-

nomenon appears to be widespread, as it has been observed in

many bird species all over the world from Europe to Asia and

the Americas (reviewed in Brumm & Zollinger 2013). Higher

minimum frequencies have been suggested to be adaptive

because they may reduce acoustic masking by low-frequency

anthropogenic noise (e.g. Slabbekoorn&Peet 2003;Hu&Car-

doso 2010; Montague, Danek-Gontard & Kunc 2013). The

majority of studies on birdsong in noisy environments mea-

sured song frequencies visually from spectrograms using, for

example, on-screen cursors that are featured in most sound

analysis programmes. For instance, of the 40 published field

studies reviewed by Brumm&Zollinger (2013) and Roca et al.

(2016), 19 used visual measurements and a further nine did not

mention the method used (cf. Brumm & Bee 2016). However,

the practice of extracting frequency measurements visually

from spectrograms is potentially prone to bias (Greenewalt

1968; Beecher 1988) as there are numerous problems with it

(Zollinger et al. 2012). A particularly relevant problem for the

study of birdsong in noisy environments is that two sounds,
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researchers are still being encouraged to eye-ball acoustic

parameters from spectrograms (e.g. Cardoso & Atwell 2012;

Job, Kohler &Gill 2016; Narango&Rodewald 2016).

Here, we provide evidence for the magnitude of the errors

resulting from the practice of visually extracting minimum

song frequencies from spectrograms, using examples from one

of themost extensively studied bird species in the field of urban

bioacoustics, the great tit (Parus major) as well as synthesized

signals. We asked human test subjects to visually measure the

minimum frequency of a set of identical signals, recorded either

in noise or no-noise conditions. In addition to the mean mea-

surement errors that occur from the masking of the signal, we

also quantified for the first time (i) a potential observer-expec-

tancy bias, which might be introduced by observers who are

informed about the presumed effects of noise on minimum

song frequencies, and (ii) the repeatability of eye-balling fre-

quencies. Repeatability in this context provides information

on how much variation in the data is explained by differences

between observers, i.e. to what extent individuals differ from

each other inmeasuringminimum frequencies.

Materials andmethods

CONSTRUCTION OF TEST SOUNDS

As source material for the song measurement tests, we used high-qual-

ity recordings from different great tit populations in Germany, the

Netherlands and Switzerland. These were made with a digital recorder

(Edirol R-09 (Roland Corporation, Hamamatsu, Japan) or Marantz

PMD 660 (Kawasaki, Japan), sampling frequency: 44�1 kHz) in com-

bination with a Telinga Stereo DAT microphone (Tobo, Sweden)

mounted in a parabolic dish or a Sennheiser ME66 directional micro-

phone (Wedemark, Germany). For details of the recording proce-

dures see Ritschard et al. (2012). From these recordings, we selected

10 songs, each from a different male, in which the element with the

lowest frequency was frequency modulated. These songs were edited

using the software Avisoft SASLab Pro v. 5.2.08 (Avisoft Bioacous-

tics, Berlin, Germany). First, the peak amplitudes of each of the 10

songs were normalized to obtain equal maximum amplitudes for all

songs while maintaining the relative amplitude differences between

the elements within each song. We then copied the lowest-frequency

element of each song into one single WAVE file retaining the original

sample rate of 44�1 kHz. In addition to these natural song elements,

we also synthesized eight elements (Table 1) using Avisoft SASLab

Pro with a sampling rate of 44�1 kHz, with 16-bit depth. These

Table 1. Acoustic properties of the eight synthesized elements. The ele-

ment shape is the characteristic of the frequency modulation according

to a sine curve for angles changing in the denoted range

Stimulus ID

Minimum

frequency (Hz) Shape

Amplitude

(dB)

1 1500 sin (32p – 2p) 0

2 1500 sin (0 – 1
2p) �6

3 1500 sin (12p – p) �3

4 1300 sin (12p – p) �9

5 1550 sin (p – 3
2p) �12

6 2200 sin (p – 3
2p) �9

7 1800 sin (12p – p) �6

8 1100 sin (12p – p) �3

which are identical in both frequency and amplitude, can 
appear markedly different in a spectrogram if there is some 
other, higher amplitude sound in the background of one of the 
recordings that is not present in the other. Because the ampli-

tude scaling of uncalibrated spectrograms is adjusted to the 
highest amplitude, high levels of noise will result in the lower-
amplitude signal being displayed with a smaller frequency 
bandwidth compared with a spectrogram of the signal without 
the noise (Zollinger et al. 2012). Another problem arises from 
the fact that masking noise can make it difficult to detect the 
actual lower frequency end of the signal from the spectrogram 
tracing. In this case, the lowest frequencies detectable for mea-

surement would increase with increasing noise level. Both 
problems may result in a measuring artefact giving the false 
impression of a positive relationship between minimum signal 
frequency and noise (Zollinger et al. 2012; Grace & Anderson 
2015; Rios-Chele�n, Lee & Patricelli 2016).
In addition to these inherent problems with the practice of 

‘eye-balling’ cursor placement, visual measurements from 
spectrograms are likely to also be prone to observer bias if the 
person taking the measurements has certain expectations in 
mind. Such psychological observer biases, although often 
unconscious, are classic examples of sources of measurement 
errors in animal behaviour studies (Martin & Bateson 2007). 
None of the published studies of birdsong in noise that visually 
extracted minimum song frequencies mention whether or not 
uninformed observers measured the songs. In cases in which 
informed observers eye-balled the spectrograms, it cannot be 
ruled out that an (unconscious) observer bias affected the 
results, exacerbating any other measurement errors.
Although a potential observer-expectancy bias has not been 

quantified so far, recent studies have shown that the systematic 
measurement error of the eye-balling practice can be as high as 
0�3–1�8 kHz (Zollinger et al. 2012; Grace & Anderson 2015; 
Rios-Chele�n, Lee & Patricelli 2016; Rios-Chel�en et al. 2017), 
which is substantial in relation to the reported noise-related 
frequency shifts in birdsongs. We know of more than two 
dozen published studies on birdsong in noise-polluted areas 
that visually extracted song frequencies from spectrograms 
and several additional studies that do not describe how fre-
quencies were measured at all. While we do not want to point 
fingers at individual studies, the mean noise-related increase in 
minimum frequencies that they reported were between 0�03 
and 0�9 kHz, which means that the reported effects tend to be 
smaller than the potential systematic error. This problem raises 
the question of whether the phenomenon of increased mini-

mum song frequencies in urban birds might be less widespread 
than is commonly assumed (cf. Brumm & Zollinger 2013; 
Rios-Chel�en et al. 2013).
Understanding the methodological concerns involved in 

research is crucial for assessing the validity of data and the con-
clusions drawn from them. However, many studies on bird-
song in noise do not seem to be aware of the biases introduced 
by inappropriate methods and despite the many problems with 
the eye-balling practice, studies using this method continue to 
be published. The continuing publication of potential measur-

ing artefacts may, at least partly, be due to the fact that



synthesized song elements allowed us to assess the robustness of the

measuring method itself because they provide ground-truth data of

known spectral content that can be compared with the values mea-

sured by the test subjects, i.e. observers (details see below).

We also created synthesized background noise that was used for the

preparation of the test stimuli (see below). This noise was based on

recordings from a total of 50 min of traffic noise recorded at five differ-

ent locations between 08.00 and 19.00 h in bird habitats in the city of

Munich,Germany. The traffic noise recordingsweremadewith a Senn-

heiser ME62microphone and aMarantz PMD660 solid-state recorder

(44�1 kHz, 16 bit). From these 50 min of traffic noise recordingswe cal-

culated an averaged power spectrum (using the function ‘Power spec-

trum (averaged)’ in Avisoft), which was then used as a filter for

synthesized white noise (using the Frequency Domain Transformation

function in Avisoft). Thus, the resulting filtered noise had the same

spectral shape as the average natural traffic noise. To produce the test

stimuli, all song elements (natural and synthetic) were

re-recorded twice in an anechoic room (located at the Max Planck

Institute for Ornithology in Seewiesen, Germany), with and without

the synthesized noise (Fig. 1). The anechoic room was a custom-built

floating room (3�5 m 9 3�1 m and 2�4 m high, completely lined with

30-cm-deep pyramidal sound absorbers). A mesh grille over the sound

absorbers on the floor allowed access to the chamber and setting up the

equipment. By using an anechoic chamber we were able to re-record

the test stimuli under acoustic free-field conditions with extremely low

background noise levels (<20 dB(A), re. 20 lPa). All sounds were

played from a computer and fed through an amplifier (Technics

SU-V300M2, Panasonic Corporation, Kadoma, Japan) to two loud-

speakers (JBL Control 1 Pro, Los Angeles, CA, USA) placed next to

each other at a height of 1�2 m. The broadcast sounds were recorded

with a digital recorder (Marantz PMD 660, 44�1 kHz sampling fre-

quency) connected to a microphone (Sennheiser ME62) that was

placed at a distance of 1�4 m from the loudspeakers facing the loud-

speaker membranes. The loudspeakers and the microphone inside the

anechoic room were connected by cables to the amplifier and recorder,

which were both placed outside of the anechoic room. Peak amplitudes

of the song playback were set at LFA = 70 dB SPL at the position of

the recording microphone. Given the natural song amplitudes of great

tits (Blumenrath & Dabelsteen 2004), the playback amplitude simu-

lated birds approx. 8 m away, which is about the typical recording dis-

tance in studies on urban great tit song (Mockford & Marshall 2009;

Huffeldt & Dabelsteen 2013). The noise amplitude was set at 60 dB(A)

SPL, which is within the range of traffic noise levels encountered by

great tits and other birds in urban habitats (Slabbekoorn & Peet 2003;

Brumm2004;Dorado-Correa, Rodr�ıguez-Rocha&Brumm2016).

Finally, the test stimuli (i.e. test files for the observers) were created

by combining the 18 song elements (10 natural and 8 synthetic) that

were re-recorded in two different treatments (with and without noise)

in one single file containing 36 song elements. Each rendition of each

element (with andwithout noise) was included twice in the file to obtain

repeated measurements (see below). Therefore, one test stimulus con-

tained altogether 72 song elements. The order of the elements was

systematically varied between three different test stimuli (A, B andC).

FREQUENCY MEASUREMENTS

The minimum frequency of each song element was measured by 54 stu-

dents and researchers from the LudwigMaximiliansUniversityMunich

and theMax Planck Institute for Ornithology. To this end, the test per-

sons were asked to visually extract the minimum frequencies using the

on-screen cursor in Avisoft SASLab Pro, which was placed on a spec-

trogram of the recording (Fig. 1). To increase the frequency resolution

of the measurement we down sampled all recordings to 16 kHz and

spectrogramswere calculated using a FFT size of 512, frame size 100%,

Hamming window. These settings resulted in a temporal resolution of

32 ms and a frequency resolution of 31 Hz. We choose this frequency

resolution because it is higher than the resolution used in published

studies that visually extracted minimum frequencies of birdsongs in

anthropogenic noise. In the eye-balling studies that we know of, the fre-

quency resolution of the spectrograms used ranged from 43 to 344 Hz

(in some cases, however, the frequency resolution could not be calcu-

lated because the studies did not mention the spectrogram settings and

the sampling frequency of the recordings). Because of the higher fre-

quency resolution used in our study, any difference in minimum fre-

quency would be easier to detect visually, which means that our test

most likely underestimates the potential error of previous studies.
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Fig. 1. Exemplary test sounds measured by the test subjects. (a) two great tit song element and two synthesized elements with no background noise 
(in total 10 different great tit song elements from different individuals and eight different synthesized elements were used) are shown in spectrograms 
of the same resolution used in the experiment (16 kHz sampling rate, 512 point FFT, Hamming window). Test subjects could adjust the spectro-
graphic display contrast and darkness to their liking. Panel (b) shows the same four test elements in masking noise, drawn with the same spectral and 
display settings as the spectrogram in panel (a). (c) A second example of the same four elements in noise, demonstrating how adjusting the spectro-
gram contrast and display settings can lessen the intensity of noise displayed, but that this also results in reduced visualization of the elements, partic-
ularly at the lowest amplitude portions of each element.



In some cases, mixed-effectsmodels assuming equal slopes across the

levels within a random effect (e.g. assuming that the magnitude of

change between two measurements is equal across individuals) might

yield optimistic standard errors around the parameter estimates of fixed

effects. This leads to upwards bias in P-values, facilitating type I errors

(Schielzeth & Forstmeier 2009). To test if such bias was present in our

models, we also fitted a random slopes model in which this potential

bias is controlled for by allowing slopes to vary among the levels within

a random effect by including the interaction termbetween the focal ran-

dom effect and the focal fixed effect in the model (Schielzeth & For-

stmeier 2009). In our case, these interactions terms were as follows:

observer and noise level, observer and signal type, observer and

sequence, element and noise level, element and stimulus, element and

treatment and element and sequence. As neither the point estimates nor

the P-values of the fixed effects changed when fitting a random slopes

model, we present here only the simpler model with fewer estimated

parameters (as described above).

Estimating variance components

To assess individual-level variance components and their repeatabilities

for each treatment group separately, we further constructed four uni-

variate mixed-effects models, i.e. one for each treatment group (in-

formed/noise, informed/no-noise, uninformed/noise and uninformed/

no-noise) withminimum frequency as the response variable (Table 3a).

Measuring repeatability, i.e. the amount of total phenotypic variance

explained by the individual, is a standardized way to express individual

variance and thus allows comparisons of the relative bias caused by the

individual between groups or populations. In each case, we fitted ran-

dom intercepts for individual and song element identity; this enabled us

to decompose the phenotypic variance into variance attributable to

individual identity, element identity (fitted to control for between-ele-

ment variation) and within-individual within-element residual. In other

words, we were able to estimate to which degree individuals differed

from each other in their averageminimum frequencymeasurements. In

all models, we also included signal type (natural vs. synthetic element;

factor), stimulus order (three levels of element arrangement: A, B and

C; factor) and sequence as fixed effects. This enabled us to control for

potential bias caused by the experimental design. Repeatability was cal-

culated by dividing a focal variance component by the total phenotypic

variation not attributable to fixed effects (Nakagawa & Schielzeth

2010; Dingemanse & Dochtermann 2013). Statistical significance of a

focal random effect was assessed by applying a likelihood ratio test

(LRT) assuming an equal mixture of v2(0) and v2(1) degrees of free-
dom, as suggested by Self & Liang (1987) and Visscher (2006). This v2-
distributed test statistic was calculated as twice the difference in Log

Likelihood between the initial model (detailed above) and a model

excluding the focal random effect (Meyer 1992; Wilson et al. 2010).

Statistical significance of fixed effects was based on the Wald F-statis-

tics and numerator and denominator degrees of freedom (Gilmour,

Gogel &Cullis 2009).

Comparing individual variance across treatments

One multivariate mixed-effect model was constructed to test whether

variance attributable to individual identity differed between treatment

groups. We were interested in differences in between-observer variance

between treatments because such variation causes different magni-

tudes of potential observer bias. Variation between observers simply

means that some observers overestimate minimum frequencies, some

underestimate them and some provide unbiased estimates. Thus, if

Fixed effects* b (SE) F(NUMdf, DENdf) P

Intercept 2753 (74�45) 1394�911,17�2 <0�001
Sequence 2�50 (0�90) 7�781,3812�4 0�006
Sequence squared �0�04 (0�01) 9�801,3812�1 0�002
Signal type �1225 (105�8) 134�221,16�0 <0�001
Stimulus order 1�742,50�5 0�185
B �39�73 (27�43)
C �47�87 (27�43)

Noise 266�5 (14�31) 346�831,3809�0 <0�001
Observer-expectancy bias �20�80 (24�81) 0�701,66�9 0�405
Observer-expectancy

bias 9 Noise

137�40 (18�29) 56�481,3809�0 <�001

Random effects r2 (SE)

Individual ID 5696�5 (1354�1) – –
Stimulus ID 49 360 (17 578) – –
Residual 77 162 (1768�1) – –

*In trait signal type, reference group is natural song; In noise, refer-

ence group is no-noise; in Stimulus order, reference group is A; in

Observer-expectancy bias, reference group is uninformed; covariates

are mean centred.

Observers (i.e. test subjects) were randomly assigned to two treat-
ment groups: informed observers (N = 27) and uninformed observers 
(N = 27). The informed observers were told that their measurements 
are part of a study testing the hypothesis that birds sing at higher fre-
quencies in noisy environments. The subjects of both groups were not 
informed (i.e. naı€ve) about the true goal of the study prior to their mea-

surements nor were they told that they measured each element several 
times. All observers were instructed by the experimenter to measure the 
minimum song frequencies by placing the cursor on the lowest song fre-
quency in the spectrogram. Each observer could change the intensity 
threshold of the spectrogram to yield the best visibility of the song trac-
ing for each measurement. The participation of observers in the study 
was voluntary and observers gave their informed consent to have their 
anonymous data used in this study.

STATIS  TICAL  METHODS

Estimating mean minimum frequencies

To assess average differences in measured minimum frequencies 
between the two treatments (informed vs. uninformed), noise levels 
(noise vs. no-noise) and their interaction, we first constructed a uni-
variate mixed-effects model with minimum frequency as response vari-
able (Table 2). Stimulus order (three levels of element arrangement: 
A, B and C; factor), signal type (natural vs. artificial; factor) and 
sequence (sequence in which the 72 elements were scored for mini-

mum frequency within individuals: squared and unsquared to control 
for linear and nonlinear learning or fatigue during the trial; mean cen-
tred covariate) were also included as fixed effects to control for poten-
tial bias caused by the experimental design. Observer and element 
identities were fitted as random effects to control for among-observer 
and among-element variation.

Table 2. Results of univariate linear mixed-effects model for pooled 
minimum frequency data to study the mean differences between differ-
ent treatment groups and the interaction between groups. We present 
fixed (b) parameters and random (r2) parameters with their standard 
errors, and F-statistics for the fixed parameters with their P-values



estimates are collected by a single observer, average estimates would

potentially be more biased in treatments that express more individual

variation in minimum frequencies. Minimum frequencies measured in

informed/noise, informed/no-noise, uninformed/noise and unin-

formed/no-noise treatment were fitted as the first, second, third and

fourth response variables. We used the same fixed and random effects

structure as detailed for the univariate models above. Note, however,

that we only show whether the individual-level variance components

and their repeatabilities differ between the treatments instead of the

full model outputs (see ‘Results’ and Table 3b). Following

Table 3. Results of (a) four univariate linear mixed-effect models: one for each unique treatment group combinations to estimate individual-level

variance components (Vi) and repeatabilities (R) for each group and (b) comparison of individual-level variance (Vi ; lower diagonal) and repeatabil-

ity (Ri; upper diagonal) estimates across all four treatment groups (derived from one multivariate model: full model output not shown here, see

Methods). We present fixed (b) parameters and random (r2) parameters and repeatabilities (R) for individual level with their standard errors, and

F-statistics (for the fixed parameters) and v2-values (for the randomparameters) with theirP-values

(a) Informed/noise Informed/no-noise

Fixed effects* b (SE) F(NUMdf, DENdf) P b (SE) F(NUMdf, DENdf) P

Intercept 3177�09 (97�38) 1349�521,24�6 <0�001 2711�72 (90�20) 895�331,16�2 <0�001
Sequence �0�26 (1�58) 0�031,1139�6 0�865 2�35 (1�45) 2�611,1140�3 0�109
Sequence squared <0�01 (0�02) <0�011,1138�9 0�981 �0�03 (0�02) 3�011,1140�5 0�085
Signal type �1262�73 (118�98) 112�631,16�0 <0�001 �1152�43 (133�58) 74�431,16�0 <0�001
Stimulus order 0�672,30�0 0�518 5�872,30�3 0�007
B �83�01 (77�09) �73�21 (21�50)
C �73�87 (78�67) �47�12 (21�99)

Random effects r2 (SE) v20=1 P r2 (SE) v20=1 P

Individual ID 30 766 (8366�6) 370�14 <0�001 912�14 (655�44) 3�4 0�026
Stimulus ID 62 105 (22 266) – – 78 405 (28 035) – –
Residual 58 825 (2470�4) – – 57 920 (2431�4) – –

Repeatability R (SE) v20=1 P R (SE) v20=1 P

Individual ID 0�203 (0�053) 370�14 <0�001 0�007 (0�005) 3�4 0�026

Fixed effects

Uninformed/noise Uninformed/no-noise

b (SE) F(NUMdf, DENdf) P b (SE) F(NUMdf, DENdf) P

Intercept 3033 (76�74) 1722�121,19�2 <0�001 2721 (99�16) 798�631,18�0 <0�001
Sequence �1�92 (1�51) 1�631,719�3 0�205 2�99 (1�69) 3�151,720�1 0�078
Sequence squared 0�01 (0�02) 0�231,718�5 0�629 �0�04 (0�02) 2�891,720�4 0�092
Signal type �1320�41 (106�82) 152�901,16�0 <0�001 �1184�59 (141�36) 70�421,16�0 <0�001
Stimulus order 1�032,18�0 0�387 0�722,18�0 0�503
B 41�33 (44�85) 6�11 (48�65)
C �24�49 (43�00) �46�97 (46�64)

Random effects r2 (SE) v20=1 P r2 (SE) v20=1 P

Individual ID 5971�3 (2297�8) 72�1 <0�001 6737�1 (2704�4) 51�42 <0�001
Stimulus ID 49 908 (17 928) – – 87 596 (31 394) – –
Residual 33 116 (1751�4) – – 49 442 (2613�1) – –

Repeatability R (SE) v20=1 P R (SE) v20=1 P

Individual ID 0�067 (0�028) 72�14 <0�001 0�047 (0�021) 51�52 <0�001

(b)Vi/Ri

Informed/noise Informed/no-noise Uninformed/noise Uninformed/no-noise

Informed/noise – v21d:f: = 37�71,P < 0�001 v21d:f: = 5�14,P = 0�023 v21d:f: = 8�37,P = 0�004
Informed/no-noise v21d:f: = 40�02,P < 0�001 – v21d:f: = 12�59,P < 0�001 v21d:f: = 8�25,P = 0�004
Uninformed/noise v21d:f: = 10�68,P = 0�001 v21d:f: = 7�92,P = 0�005 – v21d:f: = 0�42,P = 0�517
Uninformed/no-noise v21d:f: = 8�96,P = 0�003 v21d:f: = 8�68,P = 0�003 v21d:f: = 0�06,P = 0�806 –

*In trait signal type, reference group is natural song; in Stimulus order, reference group is A; covariates aremean centred.



minimum frequency measures. The sequence in which the

randomly assigned song files were presented to the obser-

vers had an effect on measured minimum frequency

(Table 2). Elements presented towards the end of the test

files were measured to have higher minimum frequencies

compared to elements in the beginning (linear term),

although this relationship was slightly concave (quadratic

term) (Table 2).

VARIANCE COMPONENTS AND THEIR COMPARISON

BETWEEN TREATMENTS

Individual identity and element identity explained signifi-

cant amounts of variation in all treatment groups (in-

formed/noise, informed/no-noise, uninformed/noise and

uninformed/no-noise; Table 3a). In other words, individu-

als differed consistently from each other in their average

minimum frequencies. Element identities also differed sig-

nificantly from each other in their average measured mini-

mum frequencies, which is to be expected by definition as

elements were chosen (in case of natural elements) or

built (in case of artificial elements) to differ from each

other.

A multivariate model testing for general differences in indi-

vidual-level variance components across all treatment groups

revealed that individual-level variances differed across treat-

ment groups (v23 = 46�64, P < 0�001). More detailed post hoc

comparisons showed that all treatment groups except unin-

formed/no-noise and uninformed/noise differed from each

other in Vi and R estimates (Table 3b) and that individual dif-

ferences in scored average minimum frequencies were highest

in the informed treatment with noise and lowest in the

informed treatment without noise, compared to the other

treatment groups (Table 3).

Fig. 2. Differences in estimated minimum frequencies (� SE) across

all treatment groups extracted from the model presented in Table 2.

The reference treatment is uninformed/no-noise.

Dingemanse & Dochtermann (2013), covariances at the residual level 
were constrained to zero because they were non-estimable. Moreover, 
covariances at the individual level were only estimated between the 
groups informed/noise and informed/no-noise as well as uninformed/

noise and uninformed/no-noise because individuals were crossed 
across noise groups. Moreover, at the element identity level, all covari-
ances were estimated because the same elements were crossed across 
all four groups (i.e. informed/noise, informed/no-noise, uninformed/

noise and uninformed/no-noise). We took a two-step approach: First, 
we tested whether treatments generally differed from each other in 
individual variance by comparing the unconstrained model (which 
estimated a separate variance for individual identity for each treat-
ment) with a model where individual variances were constrained to be 
the same across all treatments (Dingemanse & Dochtermann 2013). 
After finding a significant general difference, we tested in more detail 
whether the individual variance components differed across each of 
the two focal treatment group combinations. This was done by com-

paring the unconstrained model with a model that was constrained to 
be identical for the two focal treatment groups (Dingemanse & 
Dochtermann 2013), while the rest of the treatment groups were still 
free to vary. We further applied the same approach to variance-stan-
dardized data (Dingemanse & Dochtermann 2013) to test whether the 
repeatability of a focal variance component differed across our treat-
ments. The significance of treatment specificity of a variance compo-

nent (and R) was determined by applying a LRT (see above), with 
which we compared the fit of the unconstrained model (see above) 
with one where the focal variance component was constrained to be 
identical among the treatments. The v2-distributed test statistic was 
calculated as twice the difference in Log Likelihood between the two 
models over three (first step) and one (second step) degrees of free-
dom. All models were fitted with Gaussian error distributions; visual 
inspection confirmed that residuals did not deviate from the normal 
error distribution. All statistical models were fitted in ASReml 3.0.5 
(Gilmour, Gogel & Cullis 2009).

Results

SOURCES  OF  VARIATION  IN  MEASURED  MINIMUM  

FREQUENCIES

Informed and uninformed individuals did not differ from each 
other in their measures of average minimum frequencies in no-
noise recordings (Table 2 and Fig. 2). However, in recordings 
with noise, minimum frequencies were scored on average 
267 Hz higher compared to noise-free conditions. Moreover, 
there was a significant interaction between the level of informa-

tion and noise level: informed individuals in noisy conditions 
measured minimum frequencies on average 137 Hz higher 
compared to uninformed individuals in noisy conditions 
(Table 2 and Fig. 2). It is worth noting that in the no-noise 
condition both informed and uninformed observers measured 
minimum frequencies of synthetic signals on average relatively 
close to the true value (informed: 1516 Hz, uninformed: 
1522 Hz, true value: 1556 Hz). In noise, however, informed 
observers measured synthetic signals on average to be 304 Hz 
higher than they actually were and uninformed observers mea-

sured them on average to be 161 Hz higher.
The overall arrangement of the song elements in the test 

file (i.e. ‘stimulus order’ in Table 2) did not affect average



Discussion

Our study reveals that the inappropriate use of acoustic anal-

ysis programmes can yield false positives in the study of

birdsong in noise. When extracting minimum song frequen-

cies visually from spectrograms, at least two causes con-

tributed to the deviation from true values: a systematic

measurement artefact in masked signals and a psychological

observer bias. Although each observer measured identical

recordings, the signals that were mixed with synthesized low-

frequency traffic noise were erroneously assessed as having

higher minimum frequencies. This artefact can be accounted

for by the fact that the lower frequency end of the measured

signals was difficult to see in the spectrograms because of

the masking traffic noise (Zollinger et al. 2012; Grace &

Anderson 2015).

Our findings demonstrate that observers measured higher

minimum frequencies in noise compared to no-noise condi-

tions and that this effect was significantly stronger among

informed observers who expected an increase in minimum fre-

quency. In no-noise conditions, informed and uninformed

observers did not differ in their minimum frequency measures.

Thus, noisy recordings combined with a priori expectations of

the data at hand (which is the norm in the field) can cause an

upwards bias in measured average frequencies, leading to the

false impression of raised minimum frequencies in noise. Our

results are a vivid example of observer-expectancy bias (Martin

& Bateson 2007), a type of cognitive bias where individuals

who have certain expectations about the outcome of the exper-

iment seem to find those expectations even though they are not

necessarily real. Moreover, the observers in our study differed

consistently from each other in how high or low theymeasured

minimum frequencies irrespective of treatment and noise

group combination. Individual differences were strongest

among informed individuals scoring noisy samples, where indi-

viduals explained as much as ~20% of the variation in mea-

sured minimum frequencies. This among-individual variation

introduces a potentially severe bias: different observers would

measure different meanminimum frequencies, especially in sit-

uations with high background noise levels and an observer

with previous knowledge about the study question. If the fre-

quency measures are taken only by a single observer –which is

usually done in studies extracting frequency measures by hand

– the data are potentially biased due to individual variation, as

the average minimum frequencies depend on who is extracting

them from the recordings. However, average estimates that are

pooled from the estimates made by multiple individuals,

whether collected by experts or not, are generally thought to be

unbiased (Conradt & Roper 2005; Dyer et al. 2008; Sumpter

& Pratt 2009). This so-called ‘wisdom of crowds’ effect is based

on the phenomenon that groups of individuals make collective

decisions that are less prone to error compared to those taken

by a single individual, even if the single individual is an expert

(Conradt & Roper 2005; Dyer et al. 2008; Sumpter and Pratt

2009). Indeed, a data collection protocol using average mini-

mum frequencies that are pooled from the data extracted by

many individuals would reduce the bias caused by individuals

consistently differing from each other in their frequency esti-

mates. However, as the among-individual variation in noisy

conditions in our study is focused around the biased averages,

the simple inclusion of multiple observers in the data collection

would not significantly increase the quality of the estimates

from noisy recordings compared to the estimates from non-

noisy recordings. Instead of using the wisdom of a biased

crowd to better faulty measurements, the way forward is to

make objective measurements in the first place. In the next sec-

tion, we will advise how this can be done.

Both measurement artefacts, the individual error intro-

duced by visual scoring and the observer-expectancy bias, can

be avoided by using power or amplitude spectra (or zero-

crossing counts from waveforms for sounds with constant fre-

quencies) rather than visually extracting minimum frequencies

from spectrograms. From power spectra, minimum and maxi-

mum frequency can be measured reliably at a set amplitude

threshold below the peak amplitude (Zollinger et al. 2012).

This method is well-established and is often used among bioa-

cousticians studying animal sounds (e.g. Podos 1997; Fischer,

Hammerschmidt & Todt 1998; Templeton, Greene & Davis

2005; Siemers & Kerth 2006; DuBois, Nowicki & Searcy

2009; Hanna et al. 2011). In recordings with high levels of

low-frequency noise, such as those from heavily noise-pol-

luted areas, the measuring threshold needs to be set at a value

at which the signal-to-noise ratio is positive; otherwise the

measurement of the minimum frequency would be biased by

the noise. This means that signal components that are lower

in amplitude than the noise at the same frequency cannot be

included in the measurement. This is certainly a limitation,

but the only way to remedy this drawback is to make better

quality recordings in the first place. The skilful use of acoustic

recording equipment can reduce the amount of noise in the

recordings and yield high signal-to-noise ratios that allow

inspecting a wide range of signal frequencies in power spectra

even in the presence of high levels of low-frequency noise.

Particularly high signal-to-noise ratios can be achieved with

radio microphones placed near the song posts of birds

(Nemeth et al. 2012) or acoustic recording devices fixed on

the animals themselves (Zollinger, Goller & Brumm 2011;

Anisimov et al. 2014; Gill et al. 2015).

Some researchers may be reluctant to use threshold mea-

surements because they can see signal frequencies on the spec-

trogram that cannot be captured by the threshold. However, it

is important to bear in mind what these low-frequency compo-

nents actually represent. A threshold of only 10 dB below the

peak already comprises about 90% of the signal energy and a

20 dB threshold, which is often used for high-quality record-

ings, captures 99% of the signal energy. Frequency compo-

nents visible at lower frequencies might look persuasive on the

spectrogrambut are negligible in terms of signal transmission.

Our findings do not necessarily suggest that the results of

studies using the eye-ballingmethod are completely invalid. To

assess themagnitude of themeasurement error in these studies,

however, the audio recordings need to be re-analysed with

appropriate methods. As mentioned above, measuring mini-

mum frequencies at a set threshold below the peak amplitude
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is one way forward. There are a number of textbooks and man-

uals available that will be helpful to those wishing to make 
valid measurements (e.g. Beecher 1988; Rossing 1989; Brad-
bury & Vehrencamp 1998; Hopp, Owren & Evans 1998; 
Tohyama & Koike 1998).
On a broader note, we are concerned by the continuing 

publication of studies that rely on eye-balling frequencies 
from spectrograms by informed observers. The problem of 
observer biases in behavioural studies is long known (Kazdin 
1977; Caro et al. 1979; Balph & Balph 1983) and the need to 
avoid such bias has been repeatedly emphasized (reviewed in 
Traniello & Bakker 2015; Forstmeier, Wagenmakers & Par-
ker 2016). In bioaocoustic research, observer biases can be an 
issue too, for example, when spectrograms are visually 
assessed (Jones, ten Cate & Bijleveld 2001). Therefore, it is rel-
atively customary to use several uninformed observers when 
applying visual scoring (e.g. Houx & ten Cate 1999; Janik 
2000; Beecher et al. 2007; Geberzahn & Gahr 2013). How-

ever, avoiding observer-expectancy biases cannot entirely 
solve the problems with the visual extraction of measures 
from spectrograms because the practice is inherently flawed, 
as shown by this and other studies (Zollinger et al. 2012; 
Grace & Anderson 2015; Rios-Chele�n, Lee & Patricelli 2016; 
Rios-Chel�en et al. 2017). Although this pitfall has been recog-
nized since the early days of spectrographic analyses of bird-
song (Greenewalt 1968), the need for appropriate methods is 
not always heeded.
To date, acoustic measurements are usually done with the 

help of analysis software, a practice that has considerably 
advanced the field of bioacoustics. On the other hand, acoustic 
analysis programmes can easily be misused, especially as mea-

surements appear to be only one click away. Without an 
understanding of acoustic principles, the use of analysis soft-
ware can lead to unfavourable results, and in the worst case to 
the publication of spurious findings. We therefore encourage 
researchers to familiarize themselves with the physics of sound 
and the methodological principles of bioacoustics before using 
acoustic analysis programmes to make measurements.
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