90 research outputs found

    Central Serotonergic Neurons Activate and Recruit Thermogenic Brown and Beige Fat and Regulate Glucose and Lipid Homeostasis

    Get PDF
    SummaryThermogenic brown and beige adipocytes convert chemical energy to heat by metabolizing glucose and lipids. Serotonin (5-HT) neurons in the CNS are essential for thermoregulation and accordingly may control metabolic activity of thermogenic fat. To test this, we generated mice in which the human diphtheria toxin receptor (DTR) was selectively expressed in central 5-HT neurons. Treatment with diphtheria toxin (DT) eliminated 5-HT neurons and caused loss of thermoregulation, brown adipose tissue (BAT) steatosis, and a >50% decrease in uncoupling protein 1 (Ucp1) expression in BAT and inguinal white adipose tissue (WAT). In parallel, blood glucose increased 3.5-fold, free fatty acids 13.4-fold, and triglycerides 6.5-fold. Similar BAT and beige fat defects occurred in Lmx1bf/fePet1Cre mice in which 5-HT neurons fail to develop in utero. We conclude 5-HT neurons play a major role in regulating glucose and lipid homeostasis, in part through recruitment and metabolic activation of brown and beige adipocytes

    ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis

    Get PDF
    The unfolded protein response (UPR), induced by endoplasmic reticulum (ER) stress, regulates the expression of factors that restore protein folding homeostasis. However, in the liver and kidney, ER stress also leads to lipid accumulation, accompanied at least in the liver by transcriptional suppression of metabolic genes. The mechanisms of this accumulation, including which pathways contribute to the phenotype in each organ, are unclear. We combined gene expression profiling, biochemical assays, and untargeted lipidomics to understand the basis of stress-dependent lipid accumulation, taking advantage of enhanced hepatic and renal steatosis in mice lacking the ER stress sensor ATF6α. We found that impaired fatty acid oxidation contributed to the early development of steatosis in the liver but not the kidney, while anorexia-induced lipolysis promoted late triglyceride and free fatty acid accumulation in both organs. These findings provide evidence for both direct and indirect regulation of peripheral metabolism by ER stress

    FGF21, a liver hormone that inhibits alcohol intake in mice, increases in human circulation after acute alcohol ingestion and sustained binge drinking at Oktoberfest

    Get PDF
    Objective: Excessive alcohol consumption is a leading cause of global morbidity and mortality. However, knowledge of the biological factors that influence ad libitum alcohol intake may be incomplete. Two large studies recently linked variants in the KLB locus with levels of alcohol intake in humans. KLB encodes β-klotho, co-receptor for the liver-derived hormone fibroblast growth factor 21 (FGF21). In mice, FGF21 reduces alcohol intake, and human Fgf21 variants are enriched among heavy drinkers. Thus, the liver may limit alcohol consumption by secreting FGF21. However, whether full-length, active plasma FGF21 (FGF21 (1–181)) levels in humans increase acutely or sub-chronically in response to alcohol ingestion is uncertain. Methods: We recruited 10 healthy, fasted male subjects to receive an oral water or alcohol bolus with concurrent blood sampling for FGF21 (1–181) measurement in plasma. In addition, we measured circulating FGF21 (1–181) levels, liver stiffness, triglyceride, and other metabolic parameters in three healthy Danish men before and after consuming an average of 22.6 beers/person/day (4.4 g/kg/day of ethanol) for three days during Oktoberfest 2017 in Munich, Germany. We further correlated fasting FGF21 (1–181) levels in 49 healthy, non-alcoholic subjects of mixed sex with self-reports of alcohol-related behaviors, emotional responses, and problems. Finally, we characterized the effect of recombinant human FGF21 injection on ad libitum alcohol intake in mice. Results: We show that alcohol ingestion (25.3 g or ∼2.5 standard drinks) acutely increases plasma levels of FGF21 (1–181) 3.4-fold in fasting humans. We also find that binge drinking for three days at Oktoberfest is associated with a 2.1-fold increase in baseline FGF21 (1–181) levels, in contrast to minor deteriorations in metabolic and hepatic biomarkers. However, basal FGF21 (1–181) levels were not correlated with differences in alcohol-related behaviors, emotional responses, or problems in our non-alcoholic subjects. Finally, we show that once-daily injection of recombinant human FGF21 reduces ad libitum alcohol intake by 21% in mice. Conclusions: FGF21 (1–181) is markedly increased in circulation by both acute and sub-chronic alcohol intake in humans, and reduces alcohol intake in mice. These observations are consistent with a role for FGF21 as an endocrine inhibitor of alcohol appetite in humans. Keywords: Fibroblast growth factor 21, FGF21, Alcohol, Alcohol appetit

    Exercise Intensity and Duration Effects on In Vivo Immunity

    Get PDF
    PURPOSE: To examine the effects of intensity and duration of exercise stress on induction of in vivo immunity in humans using experimental contact hypersensitivity (CHS) with the novel antigen diphenylcyclopropenone (DPCP). METHODS: Sixty-four healthy males completed either 30 min running at 60% V O2peak (30MI), 30 min running at 80% V O2peak (30HI), 120 min running at 60% V O2peak (120MI), or seated rest (CON). Twenty min later, the subjects received a sensitizing dose of DPCP; and 4 wk later, the strength of immune reactivity was quantified by measuring the cutaneous responses to a low dose-series challenge with DPCP on the upper inner arm. Circulating epinephrine, norepinephrine and cortisol were measured before, after, and 1 h after exercise or CON. Next, to understand better whether the decrease in CHS response on 120MI was due to local inflammatory or T-cell-mediated processes, in a crossover design, 11 healthy males performed 120MI and CON, and cutaneous responses to a dose series of the irritant, croton oil (CO), were assessed on the upper inner arm. RESULTS: Immune induction by DPCP was impaired by 120MI (skinfold thickness -67% vs CON; P < 0.05). However, immune induction was unaffected by 30MI and 30HI despite elevated circulating catecholamines (30HI vs pre: P < 0.01) and greater circulating cortisol post 30HI (vs CON; P < 0.01). There was no effect of 120MI on skin irritant responses to CO. CONCLUSIONS: Prolonged moderate-intensity exercise, but not short-lasting high- or short-lasting moderate-intensity exercise, decreases the induction of in vivo immunity. No effect of prolonged moderate-intensity exercise on the skin's response to irritant challenge points toward a suppression of cell-mediated immunity in the observed decrease in CHS. Diphenylcyclopropenone provides an attractive tool to assess the effect of exercise on in vivo immunity

    New Zealand blackcurrant extract modulates the heat shock response in men during exercise in hot ambient conditions

    Get PDF
    Purpose: To determine if 7d of New Zealand blackcurrant (NZBC) extract alters the heat shock, inflammatory and apoptotic response during prolonged exertional-heat stress. Methods: Ten men (Age: 29 ± 2 years, Stature: 1.82 ± 0.02 m, Mass: 80.3 ± 2.7 kg, V̇O2max: 56 ± 2 mL·kg−1·min−1) ingested two capsules of CurraNZ™ (NZBC extract: 210 mg anthocyanins·day−1) or PLACEBO for 7d prior to 1 h treadmill run (65% V̇O2max) in hot ambient conditions (34 °C/40% RH). Blood samples were collected before (Pre), immediately after (Post), 1 h after (1-Post), and 4 h after (4-Post) exercise. Heat shock proteins (HSP90, HSP70, HSP32) were measured in plasma. HSP and protein markers of inflammatory capacity (TLR4, NF-κB) and apoptosis (BAX/BCL-2, Caspase 9) were measured in peripheral blood mononuclear cells (PBMC). Results: eHSP32 was elevated at baseline in NZBC(+ 31%; p < 0.001). In PLACEBO HSP32 content in PBMC was elevated at 4-Post(+ 98%; p = 0.002), whereas in NZBC it fell at Post(− 45%; p = 0.030) and 1-Post(− 48%; p = 0.026). eHSP70 was increased at Post in PLACEBO(+ 55.6%, p = 0.001) and NZBC (+ 50.7%, p = 0.010). eHSP90 was increased at Post(+ 77.9%, p < 0.001) and 1-Post(+ 73.2%, p < 0.001) in PLACEBO, with similar increases being shown in NZBC (+ 49.0%, p = 0.006 and + 66.2%, p = 0.001; respectively). TLR4 and NF-κB were both elevated in NZBC at PRE(+ 54%, p = 0.003 and + 57%, p = 0.004; respectively). Main effects of study condition were also shown for BAX/BCL-2(p = 0.025) and Caspase 9 (p = 0.043); both were higher in NZBC. Conclusion: 7d of NZBC extract supplementation increased eHSP32 and PBMC HSP32 content. It also increased inflammatory and apoptotic markers in PBMC, suggesting that NZBC supports the putative inflammatory response that accompanies exertional-heat stress

    World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions

    Get PDF
    BACKGROUND: To help adapt cardiovascular disease risk prediction approaches to low-income and middle-income countries, WHO has convened an effort to develop, evaluate, and illustrate revised risk models. Here, we report the derivation, validation, and illustration of the revised WHO cardiovascular disease risk prediction charts that have been adapted to the circumstances of 21 global regions. METHODS: In this model revision initiative, we derived 10-year risk prediction models for fatal and non-fatal cardiovascular disease (ie, myocardial infarction and stroke) using individual participant data from the Emerging Risk Factors Collaboration. Models included information on age, smoking status, systolic blood pressure, history of diabetes, and total cholesterol. For derivation, we included participants aged 40-80 years without a known baseline history of cardiovascular disease, who were followed up until the first myocardial infarction, fatal coronary heart disease, or stroke event. We recalibrated models using age-specific and sex-specific incidences and risk factor values available from 21 global regions. For external validation, we analysed individual participant data from studies distinct from those used in model derivation. We illustrated models by analysing data on a further 123 743 individuals from surveys in 79 countries collected with the WHO STEPwise Approach to Surveillance. FINDINGS: Our risk model derivation involved 376 177 individuals from 85 cohorts, and 19 333 incident cardiovascular events recorded during 10 years of follow-up. The derived risk prediction models discriminated well in external validation cohorts (19 cohorts, 1 096 061 individuals, 25 950 cardiovascular disease events), with Harrell's C indices ranging from 0·685 (95% CI 0·629-0·741) to 0·833 (0·783-0·882). For a given risk factor profile, we found substantial variation across global regions in the estimated 10-year predicted risk. For example, estimated cardiovascular disease risk for a 60-year-old male smoker without diabetes and with systolic blood pressure of 140 mm Hg and total cholesterol of 5 mmol/L ranged from 11% in Andean Latin America to 30% in central Asia. When applied to data from 79 countries (mostly low-income and middle-income countries), the proportion of individuals aged 40-64 years estimated to be at greater than 20% risk ranged from less than 1% in Uganda to more than 16% in Egypt. INTERPRETATION: We have derived, calibrated, and validated new WHO risk prediction models to estimate cardiovascular disease risk in 21 Global Burden of Disease regions. The widespread use of these models could enhance the accuracy, practicability, and sustainability of efforts to reduce the burden of cardiovascular disease worldwide. FUNDING: World Health Organization, British Heart Foundation (BHF), BHF Cambridge Centre for Research Excellence, UK Medical Research Council, and National Institute for Health Research
    corecore