308 research outputs found

    Catálogo sobre edad media y musicología

    Get PDF
    Sección: NoticiasEntre los catálogos informatizados de la Red de Bibliotecas del CSIC en Cataluña se puede consultar el de referencias bibliográficas sobre edad media y musicologíaN

    Hallermann-Streiff Syndrome: No Evidence for a Link to Laminopathies

    Get PDF
    Hallermann-Streiff syndrome (HSS) is a rare inherited disorder characterized by malformations of the cranium and facial bones, congenital cataracts, microphthalmia, skin atrophy, hypotrichosis, proportionate short stature, teeth abnormalities, and a typical facial appearance with prominent forehead, small pointed nose, and micrognathia. The genetic cause of this developmental disorder is presently unknown. Here we describe 8 new patients with a phenotype of HSS. Individuals with HSS present with clinical features overlapping with some progeroid syndromes that belong to the laminopathies, such as Hutchinson-Gilford progeria syndrome (HGPS) and mandibuloacral dysplasia (MAD). HGPS is caused by de novo point mutations in the LMNA gene, coding for the nuclear lamina proteins lamin A and C. MAD with type A and B lipodystrophy are recessive disorders resulting from mutations in LMNA and ZMPSTE24 , respectively. ZMPSTE24 in addition to ICMT encode proteins involved in posttranslational processing of lamin A. We hypothesized that HSS is an allelic disorder to HGPS and MAD. As the nuclear shape is often irregular in patients with LMNA mutations, we first analyzed the nuclear morphology in skin fibroblasts of patients with HSS, but could not identify any abnormality. Sequencing of the genes LMNA, ZMPSTE24 and ICMT in the 8 patients with HSS revealed the heterozygous missense mutation c.1930C>T (p.R644C) in LMNA in 1 female. Extreme phenotypic diversity and low penetrance have been associated with the p.R644C mutation. In ZMPSTE24 and ICMT , no pathogenic sequence change was detected in patients with HSS. Together, we found no evidence that HSS is another laminopathy

    Ультрадисперсные порошки на основе железа как катализаторы синтеза жидких углеводородов из СО и Н[2]

    Get PDF
    International audienceTo date, uniparental disomy (UPD) with phenotypic relevance is described for different chromosomes and it is likely that additional as yet unidentified UPD phenotypes exist. Due to technical difficulties and limitations of time and resources, molecular analyses for UPD using microsatellite markers are only performed in cases with specific phenotypic features. In this study, we carried out a whole genome UPD screening based on a microarray genotyping technique. Six patients with the diagnosis of both complete or segmental UPD including Prader-Willi syndrome (PWS; matUPD15), Angelman syndrome (AS; patUPD15), Silver-Russell syndrome (SRS; matUPD7), Beckwith-Wiedemann syndrome (BWS; patUPD11p), pseudohypoparathyroidism (PHP; patUPD20q) and a rare chromosomal rearrangement (patUPD2p, matUPD2q), were genotyped using the GeneChip Human Mapping 10K Array. Our results demonstrate the presence of UPD in the patients with high efficiency and reveal clues about the mechanisms of UPD formation. We thus conclude that array based SNP genotyping is a fast, cost-effective, and reliable approach for whole genome UPD screening

    Identification and Functional Characterization of Two Intronic NIPBL Mutations in Two Patients with Cornelia de Lange Syndrome

    Get PDF
    Cornelia de Lange syndrome (CdLS) is a rare genetically heterogeneous disorder with a high phenotypic variability including mental retardation, developmental delay, and limb malformations. The genetic causes in about 30% of patients with CdLS are still unknown. We report on the functional characterization of two intronic NIPBL mutations in two patients with CdLS that do not affect a conserved splice-donor or acceptor site. Interestingly, mRNA analyses showed aberrantly spliced transcripts missing exon 28 or 37, suggesting the loss of the branch site by the c.5329-15A>G transition and a disruption of the polypyrimidine by the c.6344del(-13)-(-8) deletion. While the loss of exon 28 retains the reading frame of the NIBPL transcript resulting in a shortened protein, the loss of exon 37 shifts the reading frame with the consequence of a premature stop of translation. Subsequent quantitative PCR analysis demonstrated a 30% decrease of the total NIPBL mRNA levels associated with the frameshift transcript. Consistent with our results, this patient shows a more severe phenotype compared to the patient with the aberrant transcript that retains its reading frame. Thus, intronic variants identified by sequencing analysis in CdLS diagnostics should carefully be examined before excluding them as nonrelevant to disease

    Mutations impairing GSK3-mediated MAF phosphorylation cause cataract, deafness, intellectual disability, seizures, and a down syndrome-like facies

    Get PDF
    Transcription factors operate in developmental processes to mediate inductive events and cell competence, and perturbation of their function or regulation can dramatically affect morphogenesis, organogenesis, and growth. We report that a narrow spectrum of amino-acid substitutions within the transactivation domain of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF), a leucine zipper-containing transcription factor of the AP1 superfamily, profoundly affect development. Seven different de novo missense mutations involving conserved residues of the four GSK3 phosphorylation motifs were identified in eight unrelated individuals. The distinctive clinical phenotype, for which we propose the eponym Aymé-Gripp syndrome, is not limited to lens and eye defects as previously reported for MAF/Maf loss of function but includes sensorineural deafness, intellectual disability, seizures, brachycephaly, distinctive flat facial appearance, skeletal anomalies, mammary gland hypoplasia, and reduced growth. Disease-causing mutations were demonstrated to impair proper MAF phosphorylation, ubiquitination and proteasomal degradation, perturbed gene expression in primary skin fibroblasts, and induced neurodevelopmental defects in an in vivo model. Our findings nosologically and clinically delineate a previously poorly understood recognizable multisystem disorder, provide evidence for MAF governing a wider range of developmental programs than previously appreciated, and describe a novel instance of protein dosage effect severely perturbing developmen

    Mutations in multidomain protein MEGF8 identify a Carpenter syndrome subtype associated with defective lateralization

    Get PDF
    Carpenter syndrome is an autosomal-recessive multiple-congenital-malformation disorder characterized by multisuture craniosynostosis and polysyndactyly of the hands and feet; many other clinical features occur, and the most frequent include obesity, umbilical hernia, cryptorchidism, and congenital heart disease. Mutations of RAB23, encoding a small GTPase that regulates vesicular transport, are present in the majority of cases. Here, we describe a disorder caused by mutations in multiple epidermal-growth-factor-like-domains 8 (MEGF8), which exhibits substantial clinical overlap with Carpenter syndrome but is frequently associated with abnormal left-right patterning. We describe five affected individuals with similar dysmorphic facies, and three of them had either complete situs inversus, dextrocardia, or transposition of the great arteries; similar cardiac abnormalities were previously identified in a mouse mutant for the orthologous Megf8. The mutant alleles comprise one nonsense, three missense, and two splice-site mutations; we demonstrate in zebrafish that, in contrast to the wild-type protein, the proteins containing all three missense alterations provide only weak rescue of an early gastrulation phenotype induced by Megf8 knockdown. We conclude that mutations in MEGF8 cause a Carpenter syndrome subtype frequently associated with defective left-right patterning, probably through perturbation of signaling by hedgehog and nodal family members. We did not observe any subject with biallelic loss-of function mutations, suggesting that some residual MEGF8 function might be necessary for survival and might influence the phenotypes observed

    The Cohesin loading factor NIPBL recruits histone deacetylases to mediate local chromatin modifications

    Get PDF
    Cornelia de Lange Syndrome (CdLS) is a rare congenital malformation disorder. About half of the patients with CdLS carry mutations in the NIPBL gene encoding the NIPBL protein, a subunit of the Cohesin loading complex. Recent studies show association of Cohesin with chromatin-remodeling complexes, either by establishing cohesion or by recruiting Cohesin to specific chromosome locations. In yeast two-hybrid assays, we identified an interaction of NIPBL with the histone deacetylases -1 and -3. These interactions were confirmed in mammalian cells by coimmunoprecipitation and a critical region for interaction was defined to a stretch of 163 amino acids of a highly conserved region of NIPBL, which is mutated in patients with CdLS. Utilizing reporter gene assays, we could show that NIPBL fused to the GAL4-DNA-binding domain (GAL4-DBD) represses promoter activity via the recruitment of histone deacetylases. Interestingly, this effect is dramatically reduced by both NIPBL missense mutations identified in CdLS and by chemical inhibition of the histone deacetylases. Our data are the first to indicate a molecular and functional connection of NIPBL with chromatin-remodeling processes via the direct interaction with histone deacetylases

    International Teaching Programme

    Get PDF
    Nicolaides-Baraitser syndrome (NBS) is an infrequently described condition, thus far reported in five cases. In order to delineate the phenotype and its natural history in more detail, we gathered data on 18 hitherto unreported patients through a multi-center collaborative study, and follow-up data of the earlier reported patients. A detailed comparison of the 23 patients is provided. NBS is a distinct and recognizable entity, and probably has been underdiagnosed until now. Main clinical features are severe mental retardation with absent or limited speech, seizures, short stature, sparse hair, typical facial characteristics, brachydactyly, prominent finger joints and broad distal phalanges. Some of the features are progressive with time. The main differential diagnosis is Coffin-Siris syndrome. There is no important gender difference in occurrence and frequency of the syndrome, and all cases have been sporadic thus far. Microarray analysis performed in 14 of the patients gave normal results. Except for the progressive nature there are no clues to the cause. (C) 2009 Wiley-Liss, Inc

    Taxonomic review of the genus Stenotus Jakovlev (Hemiptera: Heteroptera: Miridae) from the Korean Peninsula

    Get PDF
    AbstractA genus Stenotus Jakovlev (Hemiptera: Heteroptera: Miridae) is reviewed taxonomically from the Korean Peninsula with a new record Stenotus binotatus (Fabricius 1794). Morphological information, such as descriptions of male and female genitalia, of the Korean species with photographs and illustrations, and a key to the Korean species are provided

    Exon deletions and intragenic insertions are not rare in ataxia with oculomotor apraxia 2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The autosomal recessively inherited ataxia with oculomotor apraxia 2 (AOA2) is a neurodegenerative disorder characterized by juvenile or adolescent age of onset, gait ataxia, cerebellar atrophy, axonal sensorimotor neuropathy, oculomotor apraxia, and elevated serum AFP levels. AOA2 is caused by mutations within the senataxin gene (<it>SETX</it>). The majority of known mutations are nonsense, missense, and splice site mutations, as well as small deletions and insertions.</p> <p>Methods</p> <p>To detect mutations in patients showing a clinical phenotype consistent with AOA2, the coding region including splice sites of the <it>SETX </it>gene was sequenced and dosage analyses for all exons were performed on genomic DNA. The sequence of cDNA fragments of alternative transcripts isolated after RT-PCR was determined.</p> <p>Results</p> <p>Sequence analyses of the <it>SETX </it>gene in four patients revealed a heterozygous nonsense mutation or a 4 bp deletion in three cases. In another patient, PCR amplification of exon 11 to 15 dropped out. Dosage analyses and breakpoint localisation yielded a 1.3 kb LINE1 insertion in exon 12 (patient P1) and a 6.1 kb deletion between intron 11 and intron 14 (patient P2) in addition to the heterozygous nonsense mutation R1606X. Patient P3 was compound heterozygous for a 4 bp deletion in exon 10 and a 20.7 kb deletion between intron 10 and 15. This deletion was present in a homozygous state in patient P4.</p> <p>Conclusion</p> <p>Our findings indicate that gross mutations seem to be a frequent cause of AOA2 and reveal the importance of additional copy number analysis for routine diagnostics.</p
    corecore