1,147 research outputs found
Educación Popular en Argentina
El trabajo que se presenta a continuación expone el tema de la Educación Popular en el contexto argentino, repasa la comprensión del término e investiga cómo surgió la Educación Popular y la trayectoria que ésta ha seguido a lo largo de la historia, haciendo una mención especial a la década de los sesenta, setenta y ochenta. A continuación define sus prácticas y concepciones actuales, en la perspectiva de construir alternativas que sustituyan las formas y modelos tradicionales de organización social, para lo que muestra una propuesta concreta de Educación Popular que busca un modelo de sociedad más justo y democrático.Grado en Educación Socia
La esclerosis lateral amiotrófica: un complejo jeroglífico
Revisión bibliográfica selectiva y crítica sobre la Esclerosis Lateral Amiotrófica incidiendo en aspectos como la clínica, los diferentes métodos diagnósticos y el tratamiento tanto actual como nuevas líneas de investigación vigentes.
La Esclerosis Lateral Amiotrófica (ELA) es una enfermedad neurodegenerativa rápidamente progresiva que afecta a ambas motoneuronas (superior e inferior). Aunque puede afectar a ambos sexos, son los hombres los que presentan un riesgo incrementado de padecerla. Aparece entre la quinta y la séptima década de la vida y en ella intervienen tanto factores genéticos (C9orf72, SOD1 FUS, TARBDP) como ambientales (pesticidas, toxinas orgánicas, radiaciones electromagnéticas y plomo). Además, según su patrón de herencia, se pueden distinguir la ELA esporádica (90%) que aparece en ausencia de antecedentes familiares y la ELA familiar (10%) en la que existen casos previos.
Clínicamente se manifiesta por la presencia de una paresia progresiva que afecta también a la musculatura bulbar y ocasiona, por tanto, disfagia, disartria e insuficiencia respiratoria, siendo esta última la principal causa de muerte. No existe afectación sensitiva ni de los esfínteres y aunque en la mayor parte de los pacientes no existe afectación cognitiva, entre un 15-50% puede presentarla y generalmente suele aparecer en forma de demencia fronto-temporal.
Es una enfermedad difícil de diagnosticar y éste suele ser el verdadero motivo por el cual se retrasa el inicio del tratamiento, teniendo en cuenta, además, que existen múltiples enfermedades con las que se podría confundir.
El tratamiento debe ser integral y multidisciplinar. Farmacológicamente destaca el riluzole aunque están surgiendo otras alternativas como edaravone. Además, es importante destacar las nuevas líneas de investigación a nivel de la terapia génica, masitinib y la molécula 123C4. A pesar de ello, sigue siendo una enfermedad incurable y con una esperanza de vida que oscila entre los 3 y los 5 años desde el momento del diagnóstico.Grado en Medicin
Quantum transport in nanowires with spin-orbit interaction: effect of quasi-bound states.
137 p.En esta tesis abordamos este tema y presentamos un estudio teórico exhaustivo del transporte electrónicoen nanohilos cuánticos semiconductores con interacción espín-órbita en la presencia de impurezas.Modelamos el nanohilo cuántico como un sistema cuasi-unidimensional en el que el movimiento de loselectrones está confinado en la dirección perpendicular a la de propagación. La competición entre lainteracción espín-orbita, el confinamiento lateral y la impureza hace que el problema sea altamente notrivial.Para hacer frente a este problema usamos una combinación de técnicas y aproximaciones que nospermiten identificar novedosas propiedades del transporte de carga y del transporte de espín.Específicamente, describimos la conductancia mediante el formalismo de Landauer-Büttiker,extendiéndolo para el caso de campos dependientes del espín. Describimos el transporte a traves de esteformalismo en función de los coeficientes de scattering. Para calcular los coeficientes de la matriz descattering usamos la ecuación de Lippmann-Schwinger, un método ampliamente usado en el tratamientodel scattering en la mecánica cuántica
Quantum transport in nanowires with spin-orbit interaction: effect of quasi-bound states.
137 p.En esta tesis abordamos este tema y presentamos un estudio teórico exhaustivo del transporte electrónicoen nanohilos cuánticos semiconductores con interacción espín-órbita en la presencia de impurezas.Modelamos el nanohilo cuántico como un sistema cuasi-unidimensional en el que el movimiento de loselectrones está confinado en la dirección perpendicular a la de propagación. La competición entre lainteracción espín-orbita, el confinamiento lateral y la impureza hace que el problema sea altamente notrivial.Para hacer frente a este problema usamos una combinación de técnicas y aproximaciones que nospermiten identificar novedosas propiedades del transporte de carga y del transporte de espín.Específicamente, describimos la conductancia mediante el formalismo de Landauer-Büttiker,extendiéndolo para el caso de campos dependientes del espín. Describimos el transporte a traves de esteformalismo en función de los coeficientes de scattering. Para calcular los coeficientes de la matriz descattering usamos la ecuación de Lippmann-Schwinger, un método ampliamente usado en el tratamientodel scattering en la mecánica cuántica
Automatic Synthesis of Logical Models for Order-Sorted First-Order Theories
[EN] In program analysis, the synthesis of models of logical theories representing the program semantics is often useful to prove program properties. We use order-sorted first- order logic as an appropriate framework to describe the semantics and properties of programs as given theories. Then we investigate the automatic synthesis of models for such theories. We use convex polytopic domains as a flexible approach to associate different domains to different sorts. We introduce a framework for the piecewise definition of functions and predicates. We develop its use with linear expressions (in a wide sense, including linear transformations represented as matrices) and inequalities to specify functions and predicates. In this way, algorithms and tools from linear algebra and arithmetic constraint solving (e.g., SMT) can be used as a backend for an efficient implementation.Partially supported by the EU (FEDER), projects TIN2015-69175-C4-1-R, and GV PROMETEOII/2015/ 013. R. Gutiérrez also supported by Juan de la Cierva Fellowship JCI-2012-13528.Lucas Alba, S.; Gutiérrez Gil, R. (2018). Automatic Synthesis of Logical Models for Order-Sorted First-Order Theories. Journal of Automated Reasoning. 60(4):465-501. https://doi.org/10.1007/s10817-017-9419-3S465501604Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving termination properties with MU-TERM. In: Proceedings of AMAST’10. LNCS, vol. 6486, pp. 201–208 (2011)Alarcón, B., Lucas, S., Navarro-Marset, R.: Using matrix interpretations over the reals in proofs of termination. In: Proceedings of PROLE’09, pp. 255–264 (2009)Albert, E., Genaim, S., Gutiérrez, R.: A Transformational Approach to Resource Analysis with Typed-Norms. Revised Selected Papers from LOPSTR’13. LNCS, vol. 8901, pp 38–53 (2013)de Angelis, E., Fioravante, F., Pettorossi, A., Proietti, M.: Proving correctness of imperative programs by linearizing constrained Horn clauses. Theory Pract. Log. Program. 15(4–5), 635–650 (2015)de Angelis, E., Fioravante, F., Pettorossi, A., Proietti, M.: Semantics-based generation of verification conditions by program specialization. In: Proceedings of PPDP’15, pp. 91–102. ACM Press, New York (2015)Aoto, T.: Solution to the problem of zantema on a persistent property of term rewriting systems. J. Funct. Log. Program. 2001(11), 1–20 (2001)Barwise, J.: An Introduction to First-Order Logic. In: Barwise, J. (ed.) Handbook of Mathematical Logic. North-Holland, Amsterdam (1977)Barwise, J.: Axioms for Abstract Model Theory. Ann. Math. Log. 7, 221–265 (1974)Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Springer, Berlin (1998)Birkhoff, G., Lipson, J.D.: Heterogeneous algebras. J. Comb. Theory 8, 115–133 (1970)Bofill, M., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E., Rubio, A.: The Barcelogic SMT Solver. In: Proceedings of CAV’08. LNCS, vol. 5123, pp. 294–298 (2008)Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn-clause solvers for program verification. In: Fields of Logic and Computation II—Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday. LNCS, vol. 9300, pp. 24–51 (2015)Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified horn-clauses. In: Proceedings of SAS’13. LNCS vol. 7935, pp. 105–125 (2013)Bjørner, N., McMillan, K., Rybalchenko, A.: Program verification as satisfiability modulo theories. In: Proceedings of SMT’12, EPiC Series in Computing, vol. 20, pp. 3–11 (2013)Bliss, G.A.: Algebraic Functions. Dover (2004)Bonfante, G., Marion, J.-Y., Moyen, J.-Y.: On Lexicographic Termination Ordering With Space Bound Certifications. Revised Papers from PSI 2001. LNCS, vol. 2244, pp. 482–493 (2001)Boolos, G.S., Burgess, J.P., Jeffrey, R.C.: Computability and Logic, 4th edn. Cambridge University Press, Cambridge (2002)Borralleras, C., Lucas, S., Oliveras, A., Rodríguez, E., Rubio, A.: SAT modulo linear arithmetic for solving polynomial constraints. J. Autom. Reason. 48, 107–131 (2012)Bürckert, H.-J., Hollunder, B., Laux, A.: On Skolemization in constrained logics. Ann. Math. Artif. Intell. 18, 95–131 (1996)Burstall, R.M., Goguen, J.A.: Putting Theories together to make specifications. In: Proceedings of IJCAI’77, pp. 1045–1058. William Kaufmann (1977)Caplain, M.: Finding invariant assertions for proving programs. In: Proceedings of the International Conference on Reliable Software, pp. 165–171. ACM Press, New York (1975)Chang, C.L., Lee, R.C.: Symbolic Logic and Mechanical Theorem Proving. Academic Press, Orlando (1973)Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude—A High-Performance Logical Framework. LNCS 4350, (2007)Cohn, A.G.: Improving the expressiveness of many sorted logic. In: Proceedings of the National Conference on Artificial Intelligence, pp. 84–87. AAAI Press, Menlo Park (1983)Contejean, E., Marché, C., Tomás, A.-P., Urbain, X.: Mechanically proving termination using polynomial interpretations. J. Autom. Reason. 34(4), 325–363 (2006)Cooper, D.C.: Programs for mechanical program verification. Mach. Intell. 6, 43–59 (1971). Edinburgh University PressCooper, D.C.: Theorem proving in arithmetic without multiplication. Mach. Intell. 7, 91–99 (1972)Courtieu, P., Gbedo, G., Pons, O.: Improved matrix interpretations. In: Proceedings of SOFSEM’10. LNCS, vol. 5901, pp. 283–295 (2010)Cousot, P., Cousot, R., Mauborgne, L.: Logical abstract domains and interpretations. In: The Future of Sofware Engineering, pp. 48–71. Springer, New York (2011)Cousot, P., Halbwachs, N.: Automatic Discovery of linear restraints among variables of a program. In: Conference Record of POPL’78, pp. 84–96. ACM Press, New York (1978)Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)Elspas, B., Levitt, K.N., Waldinger, R.J., Waksman, A.: An assessment of techniques for proving program correctness. Comput. Surv. 4(2), 97–147 (1972)van Emdem, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming language. J. ACM 23(4), 733–742 (1976)Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. In: Proceedings of IJCAR’06. LNCS, vol. 4130, pp. 574–588 (2006)Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reason. 40(2–3), 195–220 (2008)Floyd, R.W.: Assigning meanings to programs. Math. Asp. Comput. Sci. 19, 19–32 (1967)Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: Maximal termination. In: Proceedings of RTA’08. LNCS, vol. 5117, pp. 110–125 (2008)Fuhs, C., Giesl, J., Parting, M., Schneider-Kamp, P., Swiderski, S.: Proving termination by dependency pairs and inductive theorem proving. J. Autom. Reason. 47, 133–160 (2011)Fuhs, C., Kop, C.: Polynomial interpretations for higher-order rewriting. In: Proceedings of RTA’12. LIPIcs, vol. 15, pp. 176–192 (2012)Futatsugi, K., Diaconescu, R.: CafeOBJ Report. World Scientific, AMAST Series, (1998)Gaboardi, M., Péchoux, R.: On bounding space usage of streams using interpretation analysis. Sci. Comput. Program. 111, 395–425 (2015)Giesl, J., Mesnard, F., Rubio, A., Thiemann, R., Waldmann, J.: Termination competition (termCOMP 2015). In: Proceedings of CADE’15. LNCS, vol. 9195, pp. 105–108 (2015)Giesl, J., Ströder, T., Schneider-Kamp, P., Emmes, F., Fuhs, C.: Symbolic evaluation graphs and term rewriting—a general methodology for analyzing logic programs. In: Proceedings of the PPDP’12, pp. 1–12. ACM Press (2012)Giesl, J., Raffelsieper, M., Schneider-Kamp, P., Swiderski, S., Thiemann, R.: Automated termination proofs for haskell by term rewriting. ACM Trans. Program. Lang. Syst. 33(2), 7 (2011)Gnaedig, I.: Termination of Order-sorted Rewriting. In: Proceedings of ALP’92. LNCS, vol. 632, pp. 37–52 (1992)Goguen, J.A.: Order-Sorted Algebra. Semantics and Theory of Computation Report 14, UCLA (1978)Goguen, J.A., Burstall, R.M.: Some fundamental algebraic tools for the semantics of computation. Part 1: comma categories, colimits, signatures and theories. Theoret. Comput. Sci. 31, 175–209 (1984)Goguen, J.A., Burstall, R.M.: Some fundamental algebraic tools for the semantics of computation. Part 2 signed and abstract theories. Theoret. Comput. Sci. 31, 263–295 (1984)Goguen, J., Meseguer, J.: Models and equality for logical programming. In: Proceedings of TAPSOFT’87. LNCS, vol. 250, pp. 1–22 (1987)Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An initial algebra approach to the specification, correctness and implementation of abstract data types. In: Current Trends in Programming Methodology, pp. 80–149. Prentice Hall (1978)Goguen, J.A., Meseguer, J.: Remarks on remarks on many-sorted equational logic. Sigplan Notices 22(4), 41–48 (1987)Goguen, J., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theoret. Comput. Sci. 105, 217–273 (1992)Goguen, J.A., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.-P.: Introducing OBJ. In: Goguen, J., Malcolm, G. (eds.) Software Engineering with OBJ: Algebraic Specification in Action. Kluwer, Boston (2000)Grebenshikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing software verifiers from proof rules. In: Proceedings of PLDI’12, pp. 405–416. ACM Press (2012)Gulwani, S., Tiwari, A.: Combining Abstract Interpreters. In: Proceedings of PLDI’06, pp. 376–386. ACM Press (2006)Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verification framework. In: Proceedings of CAV’15, Part I. LNCS, vol. 9206, pp. 343–361 (2015)Gutiérrez, R., Lucas, S., Reinoso, P.: A tool for the automatic generation of logical models of order-sorted first-order theories. In: Proceedings of PROLE’16, pp. 215–230 (2016). http://zenon.dsic.upv.es/ages/Hantler, S.L., King, J.C.: An introduction to proving the correctness of programs. ACM Comput. Surv. 8(3), 331–353 (1976)Hayes, P.: A logic of actions. Mach. Intell. 6, 495–520 (1971). Edinburgh University Press, EdinburghHeidergott, B., Olsder, G.J., van der Woude, J.: Max plus at work. A course on max-plus algebra and its applications. In: Modeling and Analysis of Synchronized Systems, Princeton University Press (2006)Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency pair method. In: Proceedings of IJCAR 2008. LNCS, vol. 5195, pp. 364–379 (2008)Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–583 (1969)Hodges, W.: Elementary Predicate Logic. Handbook of Philosophical Logic, vol. 1, pp. 1–131. Reidel Publishing Company (1983)Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1997)Hofbauer, D.: Termination proofs by context-dependent interpretation. In: Proceedings of RTA’01. LNCS, vol. 2051, pp. 108–121 (2001)Hofbauer, D.: Termination proofs for ground rewrite systems. interpretations and derivational complexity. Appl. Algebra Eng. Commun. Comput. 12, 21–38 (2001)Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations. In: Proceedings of RTA’89. LNCS, vol. 355, pp. 167–177 (1989)Hull, T.E., Enright, W.H., Sedgwick, A.E.: The correctness of numerical algorithms. In: Proceedings of PAAP’72, pp. 66–73 (1972)Igarashi, S., London, R.L., Luckham, D.: Automatic program verification I: a logical basis and its implementation. Acta Inform. 4, 145–182 (1975)Iwami, M.: Persistence of termination of term rewriting systems with ordered sorts. In: Proceedings of 5th JSSST Workshop on Programming and Programming Languages, Shizuoka, Japan, pp. 47–56. (2003)Iwami, M.: Persistence of termination for non-overlapping term rewriting systems. In: Proceedings of Algebraic Systems, Formal Languages and Conventional and Unconventional Computation Theory, Kokyuroku RIMS, University of Kyoto, vol. 1366, pp. 91–99 (2004)Katz, S., Manna, Z.: Logical analysis of programs. Commun. ACM 19(4), 188–206 (1976)Langford, C.H.: Review: Über deduktive Theorien mit mehreren Sorten von Grunddingen. J. Symb. Log. 4(2), 98 (1939)Lankford, D.S.: Some approaches to equality for computational logic: a survey and assessment. Memo ATP-36, Automatic Theorem Proving Project, University of Texas, Austin, TXLondon, R.L.: The current state of proving programs correct. In: Proceedings of ACM’72, vol. 1, pp. 39–46. ACM (1972)Lucas, S.: Polynomials over the reals in proofs of termination: from theory to practice. RAIRO Theor. Inform. Appl. 39(3), 547–586 (2005)Lucas, S.: Synthesis of models for order-sorted first-order theories using linear algebra and constraint solving. Electron. Proc. Theor. Comput. Sci. 200, 32–47 (2015)Lucas, S.: Use of logical models for proving operational termination in general logics. In: Selected Papers from WRLA’16. LNCS, vol. 9942, pp. 1–21 (2016)Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inform. Proces. Lett. 95, 446–453 (2005)Lucas, S., Meseguer, J.: Models for logics and conditional constraints in automated proofs of termination. In: Proceedings of AISC’14. LNAI, vol. 8884, pp. 7–18 (2014)Lucas, S., Meseguer, J.: Order-sorted dependency pairs. In: Proceedings of PPDP’08 , pp. 108–119. ACM Press (2008)Lucas, S., Meseguer, J.: Proving operational termination of declarative programs in general logics. In: Proceedings of PPDP’14, pp. 111–122. ACM Digital Library (2014)Lucas, S., Meseguer, J.: Dependency pairs for proving termination properties of conditional term rewriting systems. J. Log. Algebr. Methods Program. 86, 236–268 (2017)Manna, Z.: The correctness of programs. J. Comput. Syst. Sci. 3, 119–127 (1969)Manna, Z.: Properties of programs and the first-order predicate calculus. J. ACM 16(2), 244–255 (1969)Manna, Z.: Termination of programs represented as interpreted graphs. In: Proceedings of AFIPS’70, pp. 83–89 (1970)Manna, Z., Ness, S.: On the termination of Markov algorithms. In: Proceedings of the Third Hawaii International Conference on System Science, pp. 789–792 (1970)Manna, Z., Pnueli, A.: Formalization of properties of functional programs. J. ACM 17(3), 555–569 (1970)Marion, Y.-I., Péchoux, R.: Sup-interpretations, a semantic method for static analysis of program resources. ACM Trans. Comput. Log. 10(4), 27 (2009)Martí-Oliet, N., Meseguer, J., Palomino, M.: Theoroidal maps as algebraic simulations. Revised Selected Papers from WADT’04. LNCS, vol. 3423, pp. 126–143 (2005)McCarthy, J.: Recursive functions of symbolic expressions and their computation by machine. Part I. Commun. ACM 3(4), 184–195 (1960)Meseguer, J.: General logics. In: Ebbinghaus, H.D., et al. (eds.) Logic Colloquium’87, pp. 275–329. North-Holland (1989)Meseguer, J., Skeirik, S.: Equational formulas and pattern operations in initial order-sorted algebras. Revised Selected Papers from LOPSTR’15. LNCS, vol. 9527, pp. 36–53 (2015)Middeldorp, A.: Matrix interpretations for polynomial derivational complexity of rewrite systems. In: Proceedings of LPAR’12. LNCS, vol. 7180, p. 12 (2012)Monin, J.-F.: Understanding Formal Methods. Springer, London (2003)Montenegro, M., Peña, R., Segura, C.: Space consumption analysis by abstract interpretation: inference of recursive functions. Sci. Comput. Program. 111, 426–457 (2015)de Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and applications. Commun. ACM 54(9), 69–77 (2011)Naur, P.: Proof of algorithms by general snapshots. Bit 6, 310–316 (1966)Neurauter, F., Middeldorp, A.: Revisiting matrix interpretations for proving termination of term rewriting. In: Proceedings of RTA’11. LIPICS, vol. 10, pp. 251–266 (2011)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York (2002)Ölveczky, P.C., Lysne, O.: Order-sorted termination: the unsorted way. In: Proceedings of ALP’96. LNCS, vol. 1139, pp. 92–106 (1996)Otto, C., Brockschmidt, M., von Essen, C., Giesl, J.: Automated termination analysis of java bytecode by term rewriting. In: Proceedings of RTA’10. LIPICS, vol. 6, pp. 259–276 (2010)Péchoux, R.: Synthesis of sup-interpretations: a survey. Theoret. Comput. Sci. 467, 30–52 (2013)Podelski, A., Rybalchenko, A.: Transition invariants. In: IEEE Computer Society Proceedings of LICS’04, pp. 32–41 (2004)Prestel, A., Delzell, C.N.: Positive Polynomials. From Hilbert’s 17th Problem to Real Algebra. Springer, Berlin (2001)Robinson, D.J.S.: A Course in Linear Algebra with Applications, 2nd edn. World Scientific Publishing, Co, Singapore (2006)Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for horn-clause verification. In: Proceedings of CAV’13, vol. 8044, pp. 347–363 (2013)Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Amsterdam (1986)Schmidt, A.: Über deduktive Theorien mit mehreren Sorten von Grunddingen. Matematische Annalen 115(4), 485–506 (1938)Schmidt-Schauss, M.: Computational Aspects Of An Order-Sorted Logic With Term Declarations. PhD Thesis, Fachbereich Informatik der Universität Kaiserslautern (1988)Shapiro, S.: Foundations without Foundationalism: A Case for Second-Order Logic. Clarendon Press, New York (1991)Shostak, R.E.: A practical decision procedure for arithmetic with function symbols. J. ACM 26(2), 351–360 (1979)Smullyan, R.M.: Theory of Formal Systems. Princeton University Press, Princeton (1961)Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press, Berkeley (1951)Toyama, Y.: Counterexamples to termination for the direct sum of term rewriting systems. Inform. Process. Lett. 25, 141–143 (1987)Turing, A.M.: Checking a large routine. In: Report of a Conference on High Speed Automatic Calculating Machines, University Mathematics Laboratory, Cambridge, pp. 67–69 (1949)Urban, C.: The abstract domain of segmented ranking functions. In: Proceeding of SAS’13. LNCS, vol. 7935, pp. 43–62 (2013)Urban, C., Gurfinkel, A., Kahsai, T.: Synthesizing ranking functions from bits and pieces. In: Proceedings of TACAS’16. LNCS, vol. 9636, pp. 54–70 (2016)Waldmann, J.: Matrix interpretations on polyhedral domains. In: Proceedings of RTA’15. LIPICS, vol. 26, pp. 318–333 (2015)Waldmann, J., Bau, A., Noeth, E.: Matchbox termination prover. http://github.com/jwaldmann/matchbox/ (2014)Walther, C.: A mechanical solution of schubert’s steamroller by many-sorted resolution. Aritif. Intell. 26, 217–224 (1985)Wang, H.: Logic of many-sorted theories. J. Symb. Logic 17(2), 105–116 (1952)Zantema, H.: Termination of term rewriting: interpretation and type elimination. J. Symb. Comput. 17, 23–50 (1994
MU-TERM: Verify Termination Properties Automatically (System Description)
[EN] We report on the new version of mu-term, a tool for proving termination properties of variants of rewrite systems, including conditional, context-sensitive, equational, and order-sorted rewrite systems. We follow a unified logic-based approach to describe rewriting computations. The automatic generation of logical models for suitable first-order theories and formulas provide a common basis to implement the proofs.Supported by EU (FEDER), and projects RTI2018-094403-B-C32,PROMETEO/
2019/098, and SP20180225. Also by INCIBE program "Ayudas para la excelencia de
los equipos de investigación avanzada en ciberseguridad" (Raul Gutiérrez).Gutiérrez Gil, R.; Lucas Alba, S. (2020). MU-TERM: Verify Termination Properties Automatically (System Description). Springer Nature. 436-447. https://doi.org/10.1007/978-3-030-51054-1_28S436447Alarcón, B., et al.: Improving context-sensitive dependency pairs. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 636–651. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89439-1_44Alarcón, B., Gutiérrez, R., Lucas, S.: Context-sensitive dependency pairs. Inf. Comput. 208(8), 922–968 (2010). https://doi.org/10.1016/j.ic.2010.03.003Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving termination properties with mu-term. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp. 201–208. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17796-5_12Alarcón, B., Lucas, S., Meseguer, J.: A dependency pair framework for -termination. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 35–51. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16310-4_4Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000). https://doi.org/10.1016/S0304-3975(99)00207-8Clavel, M., et al.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reasoning 40(2–3), 195–220 (2008). https://doi.org/10.1007/s10817-007-9087-9Giesl, J., Arts, T.: Verification of erlang processes by dependency pairs. Appl. Algebra Eng. Commun. Comput. 12(1/2), 39–72 (2001). https://doi.org/10.1007/s002000100063Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination of higher-order functions. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 216–231. Springer, Heidelberg (2005). https://doi.org/10.1007/11559306_12Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006). https://doi.org/10.1007/s10817-006-9057-7Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci. 105(2), 217–273 (1992). https://doi.org/10.1016/0304-3975(92)90302-VGutiérrez, R., Lucas, S.: Function calls at frozen positions in termination of context-sensitive rewriting. In: Martí-Oliet, N., Ölveczky, P.C., Talcott, C. (eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 311–330. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23165-5_15Gutiérrez, R., Lucas, S.: Proving termination in the context-sensitive dependency pair framework. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 18–34. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16310-4_3Gutiérrez, R., Lucas, S.: Automatic generation of logical models with AGES. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 287–299. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_17Gutiérrez, R., Lucas, S.: Automatically proving and disproving feasibility conditions. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNAI, vol. 12167, pp. 416–435. Springer, Heidelberg (2020)Lucas, S.: Context-sensitive computations in functional and functional logic programs. J. Funct. Log. Program. 1998(1), 1–61 (1998). http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1998/A98-01/A98-01.htmlLucas, S.: Context-sensitive rewriting strategies. Inf. Comput. 178(1), 294–343 (2002). https://doi.org/10.1006/inco.2002.3176Lucas, S.: Proving semantic properties as first-order satisfiability. Artif. Intell. 277 (2019). https://doi.org/10.1016/j.artint.2019.103174Lucas, S., Gutiérrez, R.: Automatic synthesis of logical models for order-sorted first-order theories. J. Autom. Reasoning 60(4), 465–501 (2017). https://doi.org/10.1007/s10817-017-9419-3Lucas, S., Gutiérrez, R.: Use of logical models for proving infeasibility in term rewriting. Inf. Process. Lett. 136, 90–95 (2018). https://doi.org/10.1016/j.ipl.2018.04.002Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95(4), 446–453 (2005). https://doi.org/10.1016/j.ipl.2005.05.002Lucas, S., Meseguer, J.: Order-sorted dependency pairs. In: Antoy, S., Albert, E. (eds.) Proceedings of the 10th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, 15–17 July 2008, Valencia, Spain, pp. 108–119. ACM (2008). https://doi.org/10.1145/1389449.1389463Lucas, S., Meseguer, J.: Dependency pairs for proving termination properties of conditional term rewriting systems. J. Log. Algebraic Methods Program. 86(1), 236–268 (2017). https://doi.org/10.1016/j.jlamp.2016.03.003Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems. Part I: Definition and basic processors. J. Comput. Syst. Sci. 96, 74–106 (2018). https://doi.org/10.1016/j.jcss.2018.04.002Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems—part II: advanced processors and implementation techniques. J. Autom. Reasoning (2020). https://doi.org/10.1007/s10817-020-09542-3McCune, W.: Prover9 & Mace4. Technical report (2005–2010). http://www.cs.unm.edu/~mccune/prover9/Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer (2002). https://doi.org/10.1007/978-1-4757-3661-8 . http://www.springer.com/computer/swe/book/978-0-387-95250-5Ölveczky, P.C., Lysne, O.: Order-sorted termination: the unsorted way. In: Hanus, M., Rodríguez-Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 92–106. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61735-3_6Zantema, H.: Termination of term rewriting: interpretation and type elimination. J. Symb. Comput. 17(1), 23–50 (1994). https://doi.org/10.1006/jsco.1994.1003Zantema, H.: Termination of context-sensitive rewriting. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 172–186. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62950-5_6
infChecker. A Tool for Checking Infeasibility
[EN] Given a Conditional Term Rewriting System (CTRS) R and terms s and t, we say that the reachability condition s ->* t is *feasible* if there is a substitution \sigma instantiating the variables in s and t such that the *reachability test* \sigma(s)->* \sigma(t) succeeds; otherwise, we call it *infeasible*. Checking infeasibility of such (sequences of) reachability conditions is important in the analysis of computational properties of CTRSs, like confluence or operational termination. Recently, a logic-based approach to prove and disprove infeasibility has been introduced. In this paper we present infChecker, a new tool for checking infeasibility which is based on such an approach.Partially supported by the EU (FEDER), and projects RTI2018-094403-B-C32, PROMETEO/2019/098,
and SP20180225.
Raul Gutierrez was also supported by INCIBE program Ayudas para la excelencia de los equipos de
investigacion avanzada en ciberseguridad.Gutiérrez Gil, R.; Lucas Alba, S. (2019). infChecker. A Tool for Checking Infeasibility. Universidade de Brasilia. 38-42. http://hdl.handle.net/10251/181069S384
Propuestas didácticas para la resolución de conflictos en el aula
El presente trabajo de investigación, pretendió dar respuesta a las situaciones de conflicto generadas en el aula del 4: B, a través de propuestas didácticas que ayudaron a la implementación de una Unidad Didáctica sobre resolución de conflictos en el aula, de la Institución Educativa Antonio Nariño de Calarcá Quindío. El referente teórico conceptual tiene como base a Dewey, Pagés y Cajiao, en las didácticas de las Ciencias Sociales, en cuanto al desarrollo del pensamiento crítico reflexivo en los estudiantes; Santisteban, Pagés y Fernández hacen un aporte a la estructura de la Unidad Didáctica, así como también, Zabala define la secuencia Didáctica como un conjunto de actividades ordenadas y organizadas para el logro de un objetivo. Finalmente, Chaux y Zubiria (2004) orientan sobre cómo manejar los conflictos de manera pacífica, a través de la empatía y el asertividad. El objetivo propuesto para la investigación, fue Analizar las propuestas didácticas que ayudaron en la implementación de una unidad didáctica, para la resolución de conflictos en el aula de grado 4: B, de la Institución Educativa Antonio Nariño, de Calarcá Quindío. Dichas propuestas permitieron desarrollar no solamente las estrategias para la resolución de conflictos en el aula, sino reflexionar sobre nuestra práctica educativa. El enfoque socioconstructivista, permitió a través del aprendizaje colaborativo las múltiples interacciones entre el estudiante-estudiante, docente-estudiante, alrededor de un contenido “el conflicto”, conduciéndolo a la construcción de su propio aprendizaje desde el contexto y así reflexionar sobre sus actuaciones, para contribuir a la resolución de conflictos en forma pacífica en el aula. El método cualitativo, facilitó comprender la realidad del aula en forma crítica, combinando la etnografía y la participación-acción, para detectar y analizar conductas conflictivas en los estudiantes, a través de la implementación de la Unidad Didáctica y llegar a la resolución de conflictos en el aula
- …