44 research outputs found

    Prediction of higher thermoelectric performance in BiCuSeO by weakening electron-polar optical phonon scattering

    Get PDF
    BiCuSeO is a promising thermoelectric material, but its applications are hindered by low carrier mobility. We use first-principles calculations to analyse electron–phonon scattering mechanisms and evaluate their contributions to the thermoelectric figure of merit ZT. The combined scattering of carriers by polar optical (PO) and longitudinal acoustic (LA) phonons yields an intrinsic hole mobility of 32 cm^{2} V^{−1} s^{−1} at room temperature and a temperature power law of T^{−1.5} between 100–875 K, which agree well with experiments. We demonstrate that electron–phonon scattering in the Cu–Se layer dominates at low T (< 500 K), while contributions from the Bi–O layer become increasingly significant at higher T. At room temperature, ZT is calculated to be 0.48 and can be improved by 30% through weakening PO phonon scattering in the Cu–Se layer. This finding agrees with the experimental observation that weakening the electron–phonon interaction by Te substitution in the Cu–Se layer improves mobility and ZT. At high T, the figure of merit is improved by weakening the electron–PO phonon scattering in the Bi–O layer instead. The theoretical ZT limit of BiCuSeO is calculated to be 2.5 at 875 K

    Modular Design via Multiple Anion Chemistry of the High Mobility van der Waals Semiconductor Bi₄O₄SeCl₂

    Get PDF
    Making new van der Waals materials with electronic or magnetic functionality is a chemical design challenge for the development of two-dimensional nanoelectronic and energy conversion devices. We present the synthesis and properties of the van der Waals material Bi4O4SeCl2, which is a 1:1 superlattice of the structural units present in the van der Waals insulator BiOCl and the three-dimensionally connected semiconductor Bi2O2Se. The presence of three anions gives the new structure both the bridging selenide anion sites that connect pairs of Bi2O2 layers in Bi2O2Se and the terminal chloride sites that produce the van der Waals gap in BiOCl. This retains the electronic properties of Bi2O2Se while reducing the dimensionality of the bonding network connecting the Bi2O2Se units to allow exfoliation of Bi4O4SeCl2 to 1.4 nm height. The superlattice structure is stabilized by the configurational entropy of anion disorder across the terminal and bridging sites. The reduction in connective dimensionality with retention of electronic functionality stems from the expanded anion compositional diversity

    One Site, Two Cations, Three Environments: s2 and s0 Electronic Configurations Generate Pb-Free Relaxor Behavior in a Perovskite Oxide

    Get PDF
    The piezoelectric devices widespread in society use noncentrosymmetric Pb-based oxides because of their outstanding functional properties. The highest figures of merit reported are for perovskites based on the parent Pb(Mg1/3Nb2/3)O3 (PMN), which is a relaxor: a centrosymmetric material with local symmetry breaking that enables functional properties, which resemble those of a noncentrosymmetric material. We present the Pb-free relaxor (K1/2Bi1/2)(Mg1/3Nb2/3)O3 (KBMN), where the thermal and (di)electric behavior emerges from the discrete structural roles of the s0 K+ and s2 Bi3+ cations occupying the same A site in the perovskite structure, as revealed by diffraction methods. This opens a distinctive route to Pb-free piezoelectrics based on relaxor parents, which we demonstrate in a solid solution of KBMN with the Pb-free ferroelectric (K1/2Bi1/2)TiO3, where the structure and function evolve together, revealing a morphotropic phase boundary, as seen in PMN-derived systems. The detailed multiple-length-scale understanding of the functional behavior of KBMN suggests that precise chemical manipulation of the more diverse local displacements in the Pb-free relaxor will enhance performance

    An overview of the recent developments on fructooligosaccharide production and applications

    Get PDF
    Over the past years, many researchers have suggested that deficiencies in the diet can lead to disease states and that some diseases can be avoided through an adequate intake of relevant dietary components. Recently, a great interest in dietary modulation of the human gut has been registered. Prebiotics, such as fructooligosaccharides (FOS), play a key role in the improvement of gut microbiota balance and in individual health. FOS are generally used as components of functional foods, are generally regarded as safe (generally recognized as safe status—from the Food and Drug Administration, USA), and worth about 150€ per kilogram. Due to their nutrition- and health-relevant properties, such as moderate sweetness, low carcinogenicity, low calorimetric value, and low glycemic index, FOS have been increasingly used by the food industry. Conventionally, FOS are produced through a two-stage process that requires an enzyme production and purification step in order to proceed with the chemical reaction itself. Several studies have been conducted on the production of FOS, aiming its optimization toward the development of more efficient production processes and their potential as food ingredients. The improvement of FOS yield and productivity can be achieved by the use of different fermentative methods and different microbial sources of FOS producing enzymes and the optimization of nutritional and culture parameter; therefore, this review focuses on the latest progresses in FOS research such as its production, functional properties, and market data.Agencia de Inovacao (AdI)-Project BIOLIFE reference PRIME 03/347. Ana Dominguez acknowledges Fundacao para a Ciencia e a Tecnologia, Portugal, for her PhD grant reference SFRH/BD/23083/2005

    Mining the human phenome using allelic scores that index biological intermediates

    Get PDF
    J. Kaprio ja M-L. Lokki työryhmien jäseniä.It is common practice in genome-wide association studies (GWAS) to focus on the relationship between disease risk and genetic variants one marker at a time. When relevant genes are identified it is often possible to implicate biological intermediates and pathways likely to be involved in disease aetiology. However, single genetic variants typically explain small amounts of disease risk. Our idea is to construct allelic scores that explain greater proportions of the variance in biological intermediates, and subsequently use these scores to data mine GWAS. To investigate the approach's properties, we indexed three biological intermediates where the results of large GWAS meta-analyses were available: body mass index, C-reactive protein and low density lipoprotein levels. We generated allelic scores in the Avon Longitudinal Study of Parents and Children, and in publicly available data from the first Wellcome Trust Case Control Consortium. We compared the explanatory ability of allelic scores in terms of their capacity to proxy for the intermediate of interest, and the extent to which they associated with disease. We found that allelic scores derived from known variants and allelic scores derived from hundreds of thousands of genetic markers explained significant portions of the variance in biological intermediates of interest, and many of these scores showed expected correlations with disease. Genome-wide allelic scores however tended to lack specificity suggesting that they should be used with caution and perhaps only to proxy biological intermediates for which there are no known individual variants. Power calculations confirm the feasibility of extending our strategy to the analysis of tens of thousands of molecular phenotypes in large genome-wide meta-analyses. We conclude that our method represents a simple way in which potentially tens of thousands of molecular phenotypes could be screened for causal relationships with disease without having to expensively measure these variables in individual disease collections.Peer reviewe

    Prediction of higher thermoelectric performance in BiCuSeO by weakening electron-polar optical phonon scattering

    No full text
    Targeting electron–polar optical (PO) phonon scattering for higher thermoelectric performance in BiCuSeO.</p

    O sexo dos anjos: um olhar sobre a anatomia e a produção do sexo (como se fosse) natural The sex of angels: analyzing anatomy and the construction of (as if it were) a natural sex

    No full text
    Este artigo analisa as representações corporais e práticas sociais acionadas no que se refere às crianças e jovens intersex, contrastando a perspectiva de profissionais médicos com a dos familiares envolvidos. Parte-se de dois eixos analíticos: o olhar generificado sobre a anatomia e as visibilidades/invisibilidades do sexo. Os argumentos centrais propostos são que o sexo é tão construído na cultura quanto o gênero e que as fronteiras entre o natural e o não-natural são facilmente borradas quando se trata de definí-las a partir do que é considerado dentro ou fora das normas sociais.<br>This paper analyzes body representations and social practices related to intersex children and teenagers by contrasting the viewpoints of medical doctors and the patients' relatives. It is based upon two analytical categories: the gendered view of anatomy and the visibility/invisibility of sex. The main arguments suggested here are that sex is as culturally-built as gender, and that the boundaries between the natural and not-natural are easily blurred when it comes to defining what fits and what does not fit social norms
    corecore