188 research outputs found

    Terrestrial habitat requirements of nesting freshwater turtles

    Get PDF
    Because particular life history traits affect species vulnerability to development pressures, cross-species summaries of life history traits are useful for generating management guidelines. Conservation of aquatic turtles, many members of which are regionally or globally imperiled, requires knowing the extent of upland habitat used for nesting. Therefore, we compiled distances that nests and gravid females had been observed from wetlands. Based on records of \u3e 8000 nests and gravid female records compiled for 31 species in the United States and Canada, the distances that encompass 95% of nests vary dramatically among genera and populations, from just 8 m for Malaclemys to nearly 1400 m for Trachemys. Widths of core areas to encompass varying fractions of nesting populations (based on mean maxima across all genera) were estimated as: 50% coverage = 93 m, 75% = 154 m, 90% = 198 m, 95% = 232 m, 100% = 942 m. Approximately 6–98 m is required to encompass each consecutive 10% segment of a nesting population up to 90% coverage; thereafter, ca. 424 m is required to encompass the remaining 10%. Many genera require modest terrestrial areas (\u3c200 m zones) for 95% nest coverage (Actinemys, Apalone, Chelydra, Chrysemys, Clemmys, Glyptemys, Graptemys, Macrochelys, Malaclemys, Pseudemys, Sternotherus), whereas other genera require larger zones (Deirochelys, Emydoidea, Kinosternon, Trachemys). Our results represent planning targets for conserving sufficient areas of uplands around wetlands to ensure protection of turtle nesting sites, migrating adult female turtles, and dispersing turtle hatchlings

    Single-photon Transistors Based on the Interaction of an Emitter and Surface Plasmons

    Get PDF
    A symmetrical approach is suggested (Chang DE et al. Nat Phys 3:807, 2007) to realize a single-photon transistor, where the presence (or absence) of a single incident photon in a ‘gate’ field is sufficient to allow (prevent) the propagation of a subsequent ‘signal’ photon along the nanowire, on condition that the ‘gate’ field is symmetrically incident from both sides of an emitter simultaneously. We present a scheme for single-photon transistors based on the strong emitter-surface-plasmon interaction. In this scheme, coherent absorption of an incoming ‘gate’ photon incident along a nanotip by an emitter located near the tip of the nanotip results in a state flip in the emitter, which controls the subsequent propagation of a ‘signal’ photon in a nanowire perpendicular to the axis of the nanotip

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Prostate cancer and Hedgehog signalling pathway

    Get PDF
    [Abstract] The Hedgehog (Hh) family of intercellular signalling proteins have come to be recognised as key mediators in many fundamental processes in embryonic development. Their activities are central to the growth, patterning and morphogenesis of many different regions within the bodies of vertebrates. In some contexts, Hh signals act as morphogens in the dose-dependent induction of distinct cell fates within a target field, in others as mitogens in the regulation of cell proliferation or as inducing factors controlling the form of a developing organ. These diverse functions of Hh proteins raise many intriguing questions about their mode of action. Various studies have now demonstrated the function of Hh signalling in the control of cell proliferation, especially for stem cells and stem-like progenitors. Abnormal activation of the Hh pathway has been demonstrated in a variety of human tumours. Hh pathway activity in these tumours is required for cancer cell proliferation and tumour growth. Recent studies have uncovered the role for Hh signalling in advanced prostate cancer and demonstrated that autocrine signalling by tumour cells is required for proliferation, viability and invasive behaviour. Thus, Hh signalling represents a novel pathway in prostate cancer that offers opportunities for prognostic biomarker development, drug targeting and therapeutic response monitoring

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.

    Get PDF
    Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy

    Prediction of disability-free survival in healthy older people

    Get PDF
    Prolonging survival in good health is a fundamental societal goal. However, the leading determinants of disability-free survival in healthy older people have not been well established. Data from ASPREE, a bi-national placebo-controlled trial of aspirin with 4.7 years median follow-up, was analysed. At enrolment, participants were healthy and without prior cardiovascular events, dementia or persistent physical disability. Disability-free survival outcome was defined as absence of dementia, persistent disability or death. Selection of potential predictors from amongst 25 biomedical, psychosocial and lifestyle variables including recognized geriatric risk factors, utilizing a machine-learning approach. Separate models were developed for men and women. The selected predictors were evaluated in a multivariable Cox proportional hazards model and validated internally by bootstrapping. We included 19,114 Australian and US participants aged ≥65 years (median 74 years, IQR 71.6–77.7). Common predictors of a worse prognosis in both sexes included higher age, lower Modified Mini-Mental State Examination score, lower gait speed, lower grip strength and abnormal (low or elevated) body mass index. Additional risk factors for men included current smoking, and abnormal eGFR. In women, diabetes and depression were additional predictors. The biased-corrected areas under the receiver operating characteristic curves for the final prognostic models at 5 years were 0.72 for men and 0.75 for women. Final models showed good calibration between the observed and predicted risks. We developed a prediction model in which age, cognitive function and gait speed were the strongest predictors of disability-free survival in healthy older people. Trial registration Clinicaltrials.gov (NCT01038583)
    • …
    corecore