261 research outputs found

    Zeb2 regulates myogenic differentiation in pluripotent stem cells

    Get PDF
    Skeletal muscle differentiation is triggered by a unique family of myogenic basic helix-loop-helix transcription factors, including MyoD, MRF-4, Myf-5, and Myogenin. These transcription factors bind promoters and distant regulatory regions, including E-box elements, of genes whose expression is restricted to muscle cells. Other E-box binding zinc finger proteins target the same DNA response elements, however, their function in muscle development and regeneration is still unknown. Here, we show that the transcription factor zinc finger E-box-binding homeobox 2 (Zeb2, Sip-1, Zfhx1b) is present in skeletal muscle tissues. We investigate the role of Zeb2 in skeletal muscle differentiation using genetic tools and transgenic mouse embryonic stem cells, together with single-cell RNA-sequencing and in vivo muscle engraftment capability. We show that Zeb2 over-expression has a positive impact on skeletal muscle differentiation in pluripotent stem cells and adult myogenic progenitors. We therefore propose that Zeb2 is a novel myogenic regulator and a possible target for improving skeletal muscle regeneration. The non-neural roles of Zeb2 are poorly understood

    v-P 2 O 5 micro-clustering in P-doped silica studied by a first-principles Raman investigation

    Get PDF
    Synthetic vitreous silica is currently the preferred material for the production of optical fibres because of the several excellent properties of this glass, e.g. high transmission in the visible and IR domains, high mechanical strength, chemical durability, and ease of doping with various materials. For instance, fiber lasers and amplifiers exploit the light amplification properties provided by rare-earth ions employed as dopants in the core of silica-based optical fibers. The structure and composition of the nearest neighbor shell surrounding rare-earth ions in silica-based optical fibers and amplifiers have been intensively debated in the last decade. To reduce aggregation effects between rare-earth ions, co-dopants such as phosphorus and aluminium are added as structural modifiers; phosphorus-doping, in particular, has proved to be very efficient in dissolving rare-earth ions. In this work, we provide further insights concerning the embedding of P atoms into the silica network, which may be relevant for explaining the ease of formation of a phosphorus pentoxide nearest-neighbor shell around a rare-earth dopant. In particular, by means of first-principles calculations, we discuss alternative models for an irradiation (UV, x\u2013, \u3b3-rays) induced paramagnetic center, i.e. the so called room-temperature phosphorus-oxygen-hole center, and its precursors. We report that the most likely precursor of a room-temperature phosphorus-oxygen-hole center comprises of a micro-cluster of a few (at least two) neighboring phosphate tetrahedra, and correspondingly that the occurrence of isolated [(O-) 2 P(=O) 2 ] 12 units is unlikely even at low P-doping concentrations. In fact, this work predicts that the symmetric stretching of P=O bonds in isolated [(O-) 2 P(=O) 2 ] 12 units appears as a Raman band at a frequency of ~1110 cm 121 , and only by including at least another corner-sharing phosphate tetrahedron, it is shown to shift to higher frequencies (up to ~40 cm 121 ) due to the shortening of P=O bonds, thereby leading to an improved agreement with the observed Raman band located at ~1145 cm 121

    Collective dipole effects in ionic transport under electric fields

    Get PDF
    In the context of ionic transport in solids, the variation of a migration barrier height under electric fields is traditionally assumed to be equal to the classical electric work of a point charge that carries the transport charge. However, how reliable is this phenomenological model and how does it fare with respect to Modern Theory of Polarization? In this work, we show that such a classical picture does not hold in general as collective dipole effects may be critical. Such effects are unraveled by an appropriate polarization decomposition and by an expression that we derive, which defines the equivalent polarization-work charge. The equivalent polarization-work charge is not equal neither to the transported charge, nor to the Born effective charge of the migrating atom alone, but it is defined by the total polarization change at the transition state. Our findings are illustrated by oxygen charged defects in MgO and in SiO2

    Ancestry of the Brazilian TP53 c.1010G>A (p.Arg337His, R337H) founder mutation : clues from haplotyping of short tandem repeats on Chromosome 17p

    Get PDF
    Rare germline mutations in TP53 (17p13.1) cause a highly penetrant predisposition to a specific spectrum of early cancers, defining the Li-Fraumeni Syndrome (LFS). A germline mutation at codon 337 (p.Arg337His, c1010G>A) is found in about 0.3% of the population of Southern Brazil. This mutation is associated with partially penetrant LFS traits and is found in the germline of patients with early cancers of the LFS spectrum unselected for familial his- tory. To characterize the extended haplotypes carrying the mutation, we have genotyped 9 short tandem repeats on chromosome 17p in 12 trios of Brazilian p.Arg337His carriers. Results confirm that all share a common ancestor haplotype of Caucasian/Portuguese-Ibe- ric origin, distant in about 72–84 generations (2000 years assuming a 25 years intergenera- tional distance) and thus pre-dating European migration to Brazil. So far, the founder p. Arg337His haplotype has not been detected outside Brazil, with the exception of two resi- dents of Portugal, one of them of Brazilian origin. On the other hand, increased meiotic recombination in p.Arg337His carriers may account for higher than expected haplotype diversity. Further studies comparing haplotypes in populations of Brazil and of other areas of Portuguese migration are needed to understand the historical context of this mutation in Brazil.This study was funded by grant # 478430/2012-4 from CNPq (RFA MCT/CNPq - No 14/2012; Universal), Brazil.We would like to thank UFRGS, UFPA, AC Camargo, HC Barretos and University of Minho for their support during this work

    Zeb2 regulates myogenic differentiation in pluripotent stem cells

    Get PDF
    Skeletal muscle differentiation is triggered by a unique family of myogenic basic helix-loop-helix transcription factors, including MyoD, MRF-4, Myf-5, and Myogenin. These transcription factors bind promoters and distant regulatory regions, including E-box elements, of genes whose expression is restricted to muscle cells. Other E-box binding zinc finger proteins target the same DNA response elements, however, their function in muscle development and regeneration is still unknown. Here, we show that the transcription factor zinc finger E-box-binding homeobox 2 (Zeb2, Sip-1, Zfhx1b) is present in skeletal muscle tissues. We investigate the role of Zeb2 in skeletal muscle differentiation using genetic tools and transgenic mouse embryonic stem cells, together with single-cell RNA-sequencing and in vivo muscle engraftment capability. We show that Zeb2 over-expression has a positive impact on skeletal muscle differentiation in pluripotent stem cells and adult myogenic progenitors. We therefore propose that Zeb2 is a novel myogenic regulator and a possible target for improving skeletal muscle regeneration. The non-neural roles of Zeb2 are poorly understood

    O2 Loaded Germanosilicate Optical Fibers: Experimental In Situ Investigation and Ab Initio Simulation Study of GLPC Evolution under Irradiation

    Get PDF
    In this work we present a combined experimental and ab initio simulation investigation concerning the Germanium Lone Pair Center (GLPC), its interaction with molecular oxygen (O2), and evolution under irradiation. First, O2 loading has been applied here to Ge-doped optical fibers to reduce the concentration of GLPC point defects. Next, by means of cathodoluminescence in situ experiments, we found evidence that the 10 keV electron irradiation of the treated optical fibers induces the generation of GLPC centers, while in nonloaded optical fibers, the irradiation causes the bleaching of the pre-existing GLPC. Ab initio calculations were performed to investigate the reaction of the GLPC with molecular oxygen. Such investigations suggested the stability of the dioxagermirane (DIOG) bulk defect, and its back conversion into GLPC with a local release of O2 under irradiation. Furthermore, it is also inferred that a remarkable portion of the O2 passivated GLPC may form Ge tetrahedra connected to peroxy bridges. Such structures may have a larger resistance to the irradiation and not be back converted into GLPC

    Generation of human motor units with functional neuromuscular junctions in microfluidic devices

    Get PDF
    Neuromuscular junctions (NMJs) are specialized synapses between the axon of the lower motor neuron and the muscle facilitating the engagement of muscle contraction. In motor neuron disorders, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), NMJs degenerate, resulting in muscle atrophy and progressive paralysis. The underlying mechanism of NMJ degeneration is unknown, largely due to the lack of translatable research models. This study aimed to create a versatile and reproducible in vitro model of a human motor unit with functional NMJs. Therefore, human induced pluripotent stem cell (hiPSC)-derived motor neurons and human primary mesoangioblast (MAB)-derived myotubes were co-cultured in commercially available microfluidic devices. The use of fluidically isolated micro-compartments allows for the maintenance of cell-specific microenvironments while permitting cell-to-cell contact through microgrooves. By applying a chemotactic and volumetric gradient, the growth of motor neuron-neurites through the microgrooves promoting myotube interaction and the formation of NMJs were stimulated. These NMJs were identified immunocytochemically through co-localization of motor neuron presynaptic marker synaptophysin (SYP) and postsynaptic acetylcholine receptor (AChR) marker α-bungarotoxin (Btx) on myotubes and characterized morphologically using scanning electron microscopy (SEM). The functionality of the NMJs was confirmed by measuring calcium responses in myotubes upon depolarization of the motor neurons. The motor unit generated using standard microfluidic devices and stem cell technology can aid future research focusing on NMJs in health and disease

    MTOR and STAT3 pathway hyper-activation is associated with elevated interleukin-6 levels in patients with shwachman-diamond syndrome: Further evidence of lymphoid lineage impairment

    Get PDF
    Shwachman–Diamond syndrome (SDS) is a rare inherited bone marrow failure syndrome, resulting in neutropenia and a risk of myeloid neoplasia. A mutation in a ribosome maturation factor accounts for almost all of the cases. Lymphoid involvement in SDS has not been well characterized. We recently reported that lymphocyte subpopulations are reduced in SDS patients. We have also shown that the mTOR-STAT3 pathway is hyper-activated in SDS myeloid cell populations. Here we show that mTOR-STAT3 signaling is markedly upregulated in the lymphoid compartment of SDS patients. Furthermore, our data reveal elevated IL-6 levels in cellular supernatants obtained from lymphoblasts, bone marrow mononuclear and mesenchymal stromal cells, and plasma samples obtained from a cohort of 10 patients. Of note, everolimus-mediated inhibition of mTOR signaling is associated with basal state of phosphorylated STAT3. Finally, inhibition of mTOR-STAT3 pathway activation leads to normalization of IL-6 expression in SDS cells. Altogether, our data strengthen the hypothesis that SDS affects both lymphoid and myeloid blood compartment and suggest everolimus as a potential therapeutic agent to reduce excessive mTOR-STAT3 activation in SDS

    Dynamics of liquid He-4 in confined geometries from Time-Dependent Density Functional calculations

    Full text link
    We present numerical results obtained from Time-Dependent Density Functional calculations of the dynamics of liquid He-4 in different environments characterized by geometrical confinement. The time-dependent density profile and velocity field of He-4 are obtained by means of direct numerical integration of the non-linear Schrodinger equation associated with a phenomenological energy functional which describes accurately both the static and dynamic properties of bulk liquid He-4. Our implementation allows for a general solution in 3-D (i.e. no symmetries are assumed in order to simplify the calculations). We apply our method to study the real-time dynamics of pure and alkali-doped clusters, of a monolayer film on a weakly attractive surface and a nano-droplet spreading on a solid surface.Comment: q 1 tex file + 9 Ps figure
    • 

    corecore